Analytical Description of Empirical Probability Distribution Functions
The selection of an analytical expression approximating an empirical probability distribution function is considered. For specific examples, the problems that arise in the analysis of data from simulations and tests of aerospace products are identified. These problems cannot be solved by classical s...
Gespeichert in:
Veröffentlicht in: | Russian engineering research 2020-08, Vol.40 (8), p.669-673 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 673 |
---|---|
container_issue | 8 |
container_start_page | 669 |
container_title | Russian engineering research |
container_volume | 40 |
creator | Iosifov, P. A. Kirillin, A. V. |
description | The selection of an analytical expression approximating an empirical probability distribution function is considered. For specific examples, the problems that arise in the analysis of data from simulations and tests of aerospace products are identified. These problems cannot be solved by classical statistical methods. A universal approach based on estimation of the distance between the empirical and hypothetical distribution functions permits the selection of the best solution from those available. |
doi_str_mv | 10.3103/S1068798X20080122 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2440025150</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2440025150</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1832-ac1447c3807b9bc320c8e3f50d9984094345864609badd73ac1cd231f7d47efb3</originalsourceid><addsrcrecordid>eNp1kE9Lw0AUxBdRsFY_gLeA5-jbf83usbRNFQoKKngLu5uNbEmTuJsc8u3dNoIH8fQG5jcDbxC6xXBPMdCHVwwLkUnxQQAEYELO0AxLylIBQpxHHe306F-iqxD2AJxLzmcoXzaqHntnVJ2sbTDedb1rm6Stks2hc_5kvPhWK-1q14_J2oXeOz2cqHxozFGEa3RRqTrYm587R-_55m31mO6et0-r5S41WFCSKoMZywwVkGmpDSVghKUVh1JKwUAyyrhYsAVIrcoyo5E3JaG4ykqW2UrTObqbejvffg029MW-HXx8IRSEMQDCMYdI4Ykyvg3B26rovDsoPxYYiuNcxZ-5YoZMmRDZ5tP63-b_Q99KnGwc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2440025150</pqid></control><display><type>article</type><title>Analytical Description of Empirical Probability Distribution Functions</title><source>Springer Nature - Complete Springer Journals</source><creator>Iosifov, P. A. ; Kirillin, A. V.</creator><creatorcontrib>Iosifov, P. A. ; Kirillin, A. V.</creatorcontrib><description>The selection of an analytical expression approximating an empirical probability distribution function is considered. For specific examples, the problems that arise in the analysis of data from simulations and tests of aerospace products are identified. These problems cannot be solved by classical statistical methods. A universal approach based on estimation of the distance between the empirical and hypothetical distribution functions permits the selection of the best solution from those available.</description><identifier>ISSN: 1068-798X</identifier><identifier>EISSN: 1934-8088</identifier><identifier>DOI: 10.3103/S1068798X20080122</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Distribution functions ; Empirical analysis ; Engineering ; Engineering Design ; Identification methods ; Probability distribution ; Probability distribution functions ; Statistical analysis ; Statistical methods</subject><ispartof>Russian engineering research, 2020-08, Vol.40 (8), p.669-673</ispartof><rights>Allerton Press, Inc. 2020</rights><rights>Allerton Press, Inc. 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.3103/S1068798X20080122$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.3103/S1068798X20080122$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,778,782,27911,27912,41475,42544,51306</link.rule.ids></links><search><creatorcontrib>Iosifov, P. A.</creatorcontrib><creatorcontrib>Kirillin, A. V.</creatorcontrib><title>Analytical Description of Empirical Probability Distribution Functions</title><title>Russian engineering research</title><addtitle>Russ. Engin. Res</addtitle><description>The selection of an analytical expression approximating an empirical probability distribution function is considered. For specific examples, the problems that arise in the analysis of data from simulations and tests of aerospace products are identified. These problems cannot be solved by classical statistical methods. A universal approach based on estimation of the distance between the empirical and hypothetical distribution functions permits the selection of the best solution from those available.</description><subject>Distribution functions</subject><subject>Empirical analysis</subject><subject>Engineering</subject><subject>Engineering Design</subject><subject>Identification methods</subject><subject>Probability distribution</subject><subject>Probability distribution functions</subject><subject>Statistical analysis</subject><subject>Statistical methods</subject><issn>1068-798X</issn><issn>1934-8088</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kE9Lw0AUxBdRsFY_gLeA5-jbf83usbRNFQoKKngLu5uNbEmTuJsc8u3dNoIH8fQG5jcDbxC6xXBPMdCHVwwLkUnxQQAEYELO0AxLylIBQpxHHe306F-iqxD2AJxLzmcoXzaqHntnVJ2sbTDedb1rm6Stks2hc_5kvPhWK-1q14_J2oXeOz2cqHxozFGEa3RRqTrYm587R-_55m31mO6et0-r5S41WFCSKoMZywwVkGmpDSVghKUVh1JKwUAyyrhYsAVIrcoyo5E3JaG4ykqW2UrTObqbejvffg029MW-HXx8IRSEMQDCMYdI4Ykyvg3B26rovDsoPxYYiuNcxZ-5YoZMmRDZ5tP63-b_Q99KnGwc</recordid><startdate>20200801</startdate><enddate>20200801</enddate><creator>Iosifov, P. A.</creator><creator>Kirillin, A. V.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20200801</creationdate><title>Analytical Description of Empirical Probability Distribution Functions</title><author>Iosifov, P. A. ; Kirillin, A. V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1832-ac1447c3807b9bc320c8e3f50d9984094345864609badd73ac1cd231f7d47efb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Distribution functions</topic><topic>Empirical analysis</topic><topic>Engineering</topic><topic>Engineering Design</topic><topic>Identification methods</topic><topic>Probability distribution</topic><topic>Probability distribution functions</topic><topic>Statistical analysis</topic><topic>Statistical methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Iosifov, P. A.</creatorcontrib><creatorcontrib>Kirillin, A. V.</creatorcontrib><collection>CrossRef</collection><jtitle>Russian engineering research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Iosifov, P. A.</au><au>Kirillin, A. V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analytical Description of Empirical Probability Distribution Functions</atitle><jtitle>Russian engineering research</jtitle><stitle>Russ. Engin. Res</stitle><date>2020-08-01</date><risdate>2020</risdate><volume>40</volume><issue>8</issue><spage>669</spage><epage>673</epage><pages>669-673</pages><issn>1068-798X</issn><eissn>1934-8088</eissn><abstract>The selection of an analytical expression approximating an empirical probability distribution function is considered. For specific examples, the problems that arise in the analysis of data from simulations and tests of aerospace products are identified. These problems cannot be solved by classical statistical methods. A universal approach based on estimation of the distance between the empirical and hypothetical distribution functions permits the selection of the best solution from those available.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.3103/S1068798X20080122</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1068-798X |
ispartof | Russian engineering research, 2020-08, Vol.40 (8), p.669-673 |
issn | 1068-798X 1934-8088 |
language | eng |
recordid | cdi_proquest_journals_2440025150 |
source | Springer Nature - Complete Springer Journals |
subjects | Distribution functions Empirical analysis Engineering Engineering Design Identification methods Probability distribution Probability distribution functions Statistical analysis Statistical methods |
title | Analytical Description of Empirical Probability Distribution Functions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T20%3A46%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analytical%20Description%20of%20Empirical%20Probability%20Distribution%20Functions&rft.jtitle=Russian%20engineering%20research&rft.au=Iosifov,%20P.%20A.&rft.date=2020-08-01&rft.volume=40&rft.issue=8&rft.spage=669&rft.epage=673&rft.pages=669-673&rft.issn=1068-798X&rft.eissn=1934-8088&rft_id=info:doi/10.3103/S1068798X20080122&rft_dat=%3Cproquest_cross%3E2440025150%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2440025150&rft_id=info:pmid/&rfr_iscdi=true |