Analytical Description of Empirical Probability Distribution Functions

The selection of an analytical expression approximating an empirical probability distribution function is considered. For specific examples, the problems that arise in the analysis of data from simulations and tests of aerospace products are identified. These problems cannot be solved by classical s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Russian engineering research 2020-08, Vol.40 (8), p.669-673
Hauptverfasser: Iosifov, P. A., Kirillin, A. V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 673
container_issue 8
container_start_page 669
container_title Russian engineering research
container_volume 40
creator Iosifov, P. A.
Kirillin, A. V.
description The selection of an analytical expression approximating an empirical probability distribution function is considered. For specific examples, the problems that arise in the analysis of data from simulations and tests of aerospace products are identified. These problems cannot be solved by classical statistical methods. A universal approach based on estimation of the distance between the empirical and hypothetical distribution functions permits the selection of the best solution from those available.
doi_str_mv 10.3103/S1068798X20080122
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2440025150</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2440025150</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1832-ac1447c3807b9bc320c8e3f50d9984094345864609badd73ac1cd231f7d47efb3</originalsourceid><addsrcrecordid>eNp1kE9Lw0AUxBdRsFY_gLeA5-jbf83usbRNFQoKKngLu5uNbEmTuJsc8u3dNoIH8fQG5jcDbxC6xXBPMdCHVwwLkUnxQQAEYELO0AxLylIBQpxHHe306F-iqxD2AJxLzmcoXzaqHntnVJ2sbTDedb1rm6Stks2hc_5kvPhWK-1q14_J2oXeOz2cqHxozFGEa3RRqTrYm587R-_55m31mO6et0-r5S41WFCSKoMZywwVkGmpDSVghKUVh1JKwUAyyrhYsAVIrcoyo5E3JaG4ykqW2UrTObqbejvffg029MW-HXx8IRSEMQDCMYdI4Ykyvg3B26rovDsoPxYYiuNcxZ-5YoZMmRDZ5tP63-b_Q99KnGwc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2440025150</pqid></control><display><type>article</type><title>Analytical Description of Empirical Probability Distribution Functions</title><source>Springer Nature - Complete Springer Journals</source><creator>Iosifov, P. A. ; Kirillin, A. V.</creator><creatorcontrib>Iosifov, P. A. ; Kirillin, A. V.</creatorcontrib><description>The selection of an analytical expression approximating an empirical probability distribution function is considered. For specific examples, the problems that arise in the analysis of data from simulations and tests of aerospace products are identified. These problems cannot be solved by classical statistical methods. A universal approach based on estimation of the distance between the empirical and hypothetical distribution functions permits the selection of the best solution from those available.</description><identifier>ISSN: 1068-798X</identifier><identifier>EISSN: 1934-8088</identifier><identifier>DOI: 10.3103/S1068798X20080122</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Distribution functions ; Empirical analysis ; Engineering ; Engineering Design ; Identification methods ; Probability distribution ; Probability distribution functions ; Statistical analysis ; Statistical methods</subject><ispartof>Russian engineering research, 2020-08, Vol.40 (8), p.669-673</ispartof><rights>Allerton Press, Inc. 2020</rights><rights>Allerton Press, Inc. 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.3103/S1068798X20080122$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.3103/S1068798X20080122$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,778,782,27911,27912,41475,42544,51306</link.rule.ids></links><search><creatorcontrib>Iosifov, P. A.</creatorcontrib><creatorcontrib>Kirillin, A. V.</creatorcontrib><title>Analytical Description of Empirical Probability Distribution Functions</title><title>Russian engineering research</title><addtitle>Russ. Engin. Res</addtitle><description>The selection of an analytical expression approximating an empirical probability distribution function is considered. For specific examples, the problems that arise in the analysis of data from simulations and tests of aerospace products are identified. These problems cannot be solved by classical statistical methods. A universal approach based on estimation of the distance between the empirical and hypothetical distribution functions permits the selection of the best solution from those available.</description><subject>Distribution functions</subject><subject>Empirical analysis</subject><subject>Engineering</subject><subject>Engineering Design</subject><subject>Identification methods</subject><subject>Probability distribution</subject><subject>Probability distribution functions</subject><subject>Statistical analysis</subject><subject>Statistical methods</subject><issn>1068-798X</issn><issn>1934-8088</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kE9Lw0AUxBdRsFY_gLeA5-jbf83usbRNFQoKKngLu5uNbEmTuJsc8u3dNoIH8fQG5jcDbxC6xXBPMdCHVwwLkUnxQQAEYELO0AxLylIBQpxHHe306F-iqxD2AJxLzmcoXzaqHntnVJ2sbTDedb1rm6Stks2hc_5kvPhWK-1q14_J2oXeOz2cqHxozFGEa3RRqTrYm587R-_55m31mO6et0-r5S41WFCSKoMZywwVkGmpDSVghKUVh1JKwUAyyrhYsAVIrcoyo5E3JaG4ykqW2UrTObqbejvffg029MW-HXx8IRSEMQDCMYdI4Ykyvg3B26rovDsoPxYYiuNcxZ-5YoZMmRDZ5tP63-b_Q99KnGwc</recordid><startdate>20200801</startdate><enddate>20200801</enddate><creator>Iosifov, P. A.</creator><creator>Kirillin, A. V.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20200801</creationdate><title>Analytical Description of Empirical Probability Distribution Functions</title><author>Iosifov, P. A. ; Kirillin, A. V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1832-ac1447c3807b9bc320c8e3f50d9984094345864609badd73ac1cd231f7d47efb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Distribution functions</topic><topic>Empirical analysis</topic><topic>Engineering</topic><topic>Engineering Design</topic><topic>Identification methods</topic><topic>Probability distribution</topic><topic>Probability distribution functions</topic><topic>Statistical analysis</topic><topic>Statistical methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Iosifov, P. A.</creatorcontrib><creatorcontrib>Kirillin, A. V.</creatorcontrib><collection>CrossRef</collection><jtitle>Russian engineering research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Iosifov, P. A.</au><au>Kirillin, A. V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analytical Description of Empirical Probability Distribution Functions</atitle><jtitle>Russian engineering research</jtitle><stitle>Russ. Engin. Res</stitle><date>2020-08-01</date><risdate>2020</risdate><volume>40</volume><issue>8</issue><spage>669</spage><epage>673</epage><pages>669-673</pages><issn>1068-798X</issn><eissn>1934-8088</eissn><abstract>The selection of an analytical expression approximating an empirical probability distribution function is considered. For specific examples, the problems that arise in the analysis of data from simulations and tests of aerospace products are identified. These problems cannot be solved by classical statistical methods. A universal approach based on estimation of the distance between the empirical and hypothetical distribution functions permits the selection of the best solution from those available.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.3103/S1068798X20080122</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1068-798X
ispartof Russian engineering research, 2020-08, Vol.40 (8), p.669-673
issn 1068-798X
1934-8088
language eng
recordid cdi_proquest_journals_2440025150
source Springer Nature - Complete Springer Journals
subjects Distribution functions
Empirical analysis
Engineering
Engineering Design
Identification methods
Probability distribution
Probability distribution functions
Statistical analysis
Statistical methods
title Analytical Description of Empirical Probability Distribution Functions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T20%3A46%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analytical%20Description%20of%20Empirical%20Probability%20Distribution%20Functions&rft.jtitle=Russian%20engineering%20research&rft.au=Iosifov,%20P.%20A.&rft.date=2020-08-01&rft.volume=40&rft.issue=8&rft.spage=669&rft.epage=673&rft.pages=669-673&rft.issn=1068-798X&rft.eissn=1934-8088&rft_id=info:doi/10.3103/S1068798X20080122&rft_dat=%3Cproquest_cross%3E2440025150%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2440025150&rft_id=info:pmid/&rfr_iscdi=true