All‐Solution Processed Multicolor Patterning Technique of Perovskite Nanocrystal for Color Pixel Array and Flexible Optoelectronic Devices

In the present study, a new patterning method is introduced through the surface modification and stabilization of perovskite nanocrystals, which is compatible with conventional photolithography process based on all‐solution processes. Chemically designed gel‐type silica‐coated CsPbX3 (X = Br, I, etc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced optical materials 2020-09, Vol.8 (17), p.n/a
Hauptverfasser: Jeon, Sanghyun, Lee, Sang Yeop, Kim, Su‐Kyung, Kim, Woosik, Park, Taesung, Bang, Junsung, Ahn, Junhyuk, Woo, Ho Kun, Chae, Ji‐Yeon, Paik, Taejong, Seong, Tae‐Yeon, Oh, Soong Ju
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 17
container_start_page
container_title Advanced optical materials
container_volume 8
creator Jeon, Sanghyun
Lee, Sang Yeop
Kim, Su‐Kyung
Kim, Woosik
Park, Taesung
Bang, Junsung
Ahn, Junhyuk
Woo, Ho Kun
Chae, Ji‐Yeon
Paik, Taejong
Seong, Tae‐Yeon
Oh, Soong Ju
description In the present study, a new patterning method is introduced through the surface modification and stabilization of perovskite nanocrystals, which is compatible with conventional photolithography process based on all‐solution processes. Chemically designed gel‐type silica‐coated CsPbX3 (X = Br, I, etc.) perovskite nanocrystals combined with dip coating method are introduced to form stable and uniform films. Analyses of the physical and chemical states of nanocrystals and investigation of the kinetics in silica formation are conducted. In an optimized condition, physically uniform and chemically stable perovskite thin films are deposited on various substrates such as flexible, stretchable substrates, or even nonflat objects. By adopting these advantages and developing stable photolithographic chemicals, the high resolution patterns are successfully patterned with green and red emitting CsPbBr3 and CsPbBr3I3−x perovskites with the size down to 5 µm of radius and even a multicolor pixel array which can be used for the color filter, light converting or detecting applications. Flexible white light emitting diode is also fabricated with a large color gamut coverage. This work provides a fundamental understanding of perovskite nanocrystals, and also offers a technological breakthrough enabling various optoelectronic applications. Silica‐coated all inorganic lead halide perovskite nanocrystals are successfully patterned using conventional photolithography with all‐solution processes. The perovskite could be patterned up to 5 µm of radius using this technique. Multicolor patterning is likewise achieved. Flexible white light emitting diode is fabricated. To achieve this, gel‐type silica‐coated perovskite, dip‐coating, surface chemistry, and solvent engineering are systematically investigated and modulated.
doi_str_mv 10.1002/adom.202000501
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2440003201</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2440003201</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3171-b48faccb5cea704d1ca436f403d6eab2ccce221b9bd6ea09baa7993ee06732a43</originalsourceid><addsrcrecordid>eNqFkLFOwzAQhi0EEhV0ZbbEnGI7aUPGqKWA1NJKlNlynAu4uHGx3dJsPAADz8iT4CoI2JjuTvq-O92P0BklPUoIuxClWfUYYYSQPqEHqMNo1o8oSenhn_4YdZ1bBiYMcZakHfSea_359nFv9MYrU-O5NRKcgxJPN9orabSxeC68B1ur-hEvQD7V6mUD2FR4DtZs3bPygO9EbaRtnBcaV0EZtqLagca5taLBoi7xWMNOFRrwbO0NaJDemlpJPIKtCmdP0VEltIPudz1BD-OrxfAmmsyub4f5JJIxTWlUJJeVkLLoSxApSUoqRRIPqoTE5QBEwaSUwBgtsmI_k6wQIs2yGIAM0pgF9gSdt3vX1oRXnOdLs7F1OMlZkoR4YkZooHotJa1xzkLF11athG04JXwfOt-Hzn9CD0LWCq9KQ_MPzfPRbPrrfgEHXIpa</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2440003201</pqid></control><display><type>article</type><title>All‐Solution Processed Multicolor Patterning Technique of Perovskite Nanocrystal for Color Pixel Array and Flexible Optoelectronic Devices</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Jeon, Sanghyun ; Lee, Sang Yeop ; Kim, Su‐Kyung ; Kim, Woosik ; Park, Taesung ; Bang, Junsung ; Ahn, Junhyuk ; Woo, Ho Kun ; Chae, Ji‐Yeon ; Paik, Taejong ; Seong, Tae‐Yeon ; Oh, Soong Ju</creator><creatorcontrib>Jeon, Sanghyun ; Lee, Sang Yeop ; Kim, Su‐Kyung ; Kim, Woosik ; Park, Taesung ; Bang, Junsung ; Ahn, Junhyuk ; Woo, Ho Kun ; Chae, Ji‐Yeon ; Paik, Taejong ; Seong, Tae‐Yeon ; Oh, Soong Ju</creatorcontrib><description>In the present study, a new patterning method is introduced through the surface modification and stabilization of perovskite nanocrystals, which is compatible with conventional photolithography process based on all‐solution processes. Chemically designed gel‐type silica‐coated CsPbX3 (X = Br, I, etc.) perovskite nanocrystals combined with dip coating method are introduced to form stable and uniform films. Analyses of the physical and chemical states of nanocrystals and investigation of the kinetics in silica formation are conducted. In an optimized condition, physically uniform and chemically stable perovskite thin films are deposited on various substrates such as flexible, stretchable substrates, or even nonflat objects. By adopting these advantages and developing stable photolithographic chemicals, the high resolution patterns are successfully patterned with green and red emitting CsPbBr3 and CsPbBr3I3−x perovskites with the size down to 5 µm of radius and even a multicolor pixel array which can be used for the color filter, light converting or detecting applications. Flexible white light emitting diode is also fabricated with a large color gamut coverage. This work provides a fundamental understanding of perovskite nanocrystals, and also offers a technological breakthrough enabling various optoelectronic applications. Silica‐coated all inorganic lead halide perovskite nanocrystals are successfully patterned using conventional photolithography with all‐solution processes. The perovskite could be patterned up to 5 µm of radius using this technique. Multicolor patterning is likewise achieved. Flexible white light emitting diode is fabricated. To achieve this, gel‐type silica‐coated perovskite, dip‐coating, surface chemistry, and solvent engineering are systematically investigated and modulated.</description><identifier>ISSN: 2195-1071</identifier><identifier>EISSN: 2195-1071</identifier><identifier>DOI: 10.1002/adom.202000501</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>all‐inorganic perovskites ; Arrays ; Color ; color filter ; Immersion coating ; Light emitting diodes ; Materials science ; Nanocrystals ; Optics ; Optoelectronic devices ; patterning ; Perovskites ; Photolithography ; Pixels ; Silica gel ; Silicon dioxide ; Substrates ; surface modification ; Thin films ; White light</subject><ispartof>Advanced optical materials, 2020-09, Vol.8 (17), p.n/a</ispartof><rights>2020 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>2020 Wiley‐VCH GmbH</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3171-b48faccb5cea704d1ca436f403d6eab2ccce221b9bd6ea09baa7993ee06732a43</citedby><cites>FETCH-LOGICAL-c3171-b48faccb5cea704d1ca436f403d6eab2ccce221b9bd6ea09baa7993ee06732a43</cites><orcidid>0000-0002-0787-2528 ; 0000-0003-1434-8844 ; 0000-0001-5904-8082 ; 0000-0003-1477-9783 ; 0000-0001-8148-9714 ; 0000-0002-0673-6700</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadom.202000501$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadom.202000501$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Jeon, Sanghyun</creatorcontrib><creatorcontrib>Lee, Sang Yeop</creatorcontrib><creatorcontrib>Kim, Su‐Kyung</creatorcontrib><creatorcontrib>Kim, Woosik</creatorcontrib><creatorcontrib>Park, Taesung</creatorcontrib><creatorcontrib>Bang, Junsung</creatorcontrib><creatorcontrib>Ahn, Junhyuk</creatorcontrib><creatorcontrib>Woo, Ho Kun</creatorcontrib><creatorcontrib>Chae, Ji‐Yeon</creatorcontrib><creatorcontrib>Paik, Taejong</creatorcontrib><creatorcontrib>Seong, Tae‐Yeon</creatorcontrib><creatorcontrib>Oh, Soong Ju</creatorcontrib><title>All‐Solution Processed Multicolor Patterning Technique of Perovskite Nanocrystal for Color Pixel Array and Flexible Optoelectronic Devices</title><title>Advanced optical materials</title><description>In the present study, a new patterning method is introduced through the surface modification and stabilization of perovskite nanocrystals, which is compatible with conventional photolithography process based on all‐solution processes. Chemically designed gel‐type silica‐coated CsPbX3 (X = Br, I, etc.) perovskite nanocrystals combined with dip coating method are introduced to form stable and uniform films. Analyses of the physical and chemical states of nanocrystals and investigation of the kinetics in silica formation are conducted. In an optimized condition, physically uniform and chemically stable perovskite thin films are deposited on various substrates such as flexible, stretchable substrates, or even nonflat objects. By adopting these advantages and developing stable photolithographic chemicals, the high resolution patterns are successfully patterned with green and red emitting CsPbBr3 and CsPbBr3I3−x perovskites with the size down to 5 µm of radius and even a multicolor pixel array which can be used for the color filter, light converting or detecting applications. Flexible white light emitting diode is also fabricated with a large color gamut coverage. This work provides a fundamental understanding of perovskite nanocrystals, and also offers a technological breakthrough enabling various optoelectronic applications. Silica‐coated all inorganic lead halide perovskite nanocrystals are successfully patterned using conventional photolithography with all‐solution processes. The perovskite could be patterned up to 5 µm of radius using this technique. Multicolor patterning is likewise achieved. Flexible white light emitting diode is fabricated. To achieve this, gel‐type silica‐coated perovskite, dip‐coating, surface chemistry, and solvent engineering are systematically investigated and modulated.</description><subject>all‐inorganic perovskites</subject><subject>Arrays</subject><subject>Color</subject><subject>color filter</subject><subject>Immersion coating</subject><subject>Light emitting diodes</subject><subject>Materials science</subject><subject>Nanocrystals</subject><subject>Optics</subject><subject>Optoelectronic devices</subject><subject>patterning</subject><subject>Perovskites</subject><subject>Photolithography</subject><subject>Pixels</subject><subject>Silica gel</subject><subject>Silicon dioxide</subject><subject>Substrates</subject><subject>surface modification</subject><subject>Thin films</subject><subject>White light</subject><issn>2195-1071</issn><issn>2195-1071</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqFkLFOwzAQhi0EEhV0ZbbEnGI7aUPGqKWA1NJKlNlynAu4uHGx3dJsPAADz8iT4CoI2JjuTvq-O92P0BklPUoIuxClWfUYYYSQPqEHqMNo1o8oSenhn_4YdZ1bBiYMcZakHfSea_359nFv9MYrU-O5NRKcgxJPN9orabSxeC68B1ur-hEvQD7V6mUD2FR4DtZs3bPygO9EbaRtnBcaV0EZtqLagca5taLBoi7xWMNOFRrwbO0NaJDemlpJPIKtCmdP0VEltIPudz1BD-OrxfAmmsyub4f5JJIxTWlUJJeVkLLoSxApSUoqRRIPqoTE5QBEwaSUwBgtsmI_k6wQIs2yGIAM0pgF9gSdt3vX1oRXnOdLs7F1OMlZkoR4YkZooHotJa1xzkLF11athG04JXwfOt-Hzn9CD0LWCq9KQ_MPzfPRbPrrfgEHXIpa</recordid><startdate>20200901</startdate><enddate>20200901</enddate><creator>Jeon, Sanghyun</creator><creator>Lee, Sang Yeop</creator><creator>Kim, Su‐Kyung</creator><creator>Kim, Woosik</creator><creator>Park, Taesung</creator><creator>Bang, Junsung</creator><creator>Ahn, Junhyuk</creator><creator>Woo, Ho Kun</creator><creator>Chae, Ji‐Yeon</creator><creator>Paik, Taejong</creator><creator>Seong, Tae‐Yeon</creator><creator>Oh, Soong Ju</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-0787-2528</orcidid><orcidid>https://orcid.org/0000-0003-1434-8844</orcidid><orcidid>https://orcid.org/0000-0001-5904-8082</orcidid><orcidid>https://orcid.org/0000-0003-1477-9783</orcidid><orcidid>https://orcid.org/0000-0001-8148-9714</orcidid><orcidid>https://orcid.org/0000-0002-0673-6700</orcidid></search><sort><creationdate>20200901</creationdate><title>All‐Solution Processed Multicolor Patterning Technique of Perovskite Nanocrystal for Color Pixel Array and Flexible Optoelectronic Devices</title><author>Jeon, Sanghyun ; Lee, Sang Yeop ; Kim, Su‐Kyung ; Kim, Woosik ; Park, Taesung ; Bang, Junsung ; Ahn, Junhyuk ; Woo, Ho Kun ; Chae, Ji‐Yeon ; Paik, Taejong ; Seong, Tae‐Yeon ; Oh, Soong Ju</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3171-b48faccb5cea704d1ca436f403d6eab2ccce221b9bd6ea09baa7993ee06732a43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>all‐inorganic perovskites</topic><topic>Arrays</topic><topic>Color</topic><topic>color filter</topic><topic>Immersion coating</topic><topic>Light emitting diodes</topic><topic>Materials science</topic><topic>Nanocrystals</topic><topic>Optics</topic><topic>Optoelectronic devices</topic><topic>patterning</topic><topic>Perovskites</topic><topic>Photolithography</topic><topic>Pixels</topic><topic>Silica gel</topic><topic>Silicon dioxide</topic><topic>Substrates</topic><topic>surface modification</topic><topic>Thin films</topic><topic>White light</topic><toplevel>online_resources</toplevel><creatorcontrib>Jeon, Sanghyun</creatorcontrib><creatorcontrib>Lee, Sang Yeop</creatorcontrib><creatorcontrib>Kim, Su‐Kyung</creatorcontrib><creatorcontrib>Kim, Woosik</creatorcontrib><creatorcontrib>Park, Taesung</creatorcontrib><creatorcontrib>Bang, Junsung</creatorcontrib><creatorcontrib>Ahn, Junhyuk</creatorcontrib><creatorcontrib>Woo, Ho Kun</creatorcontrib><creatorcontrib>Chae, Ji‐Yeon</creatorcontrib><creatorcontrib>Paik, Taejong</creatorcontrib><creatorcontrib>Seong, Tae‐Yeon</creatorcontrib><creatorcontrib>Oh, Soong Ju</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced optical materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jeon, Sanghyun</au><au>Lee, Sang Yeop</au><au>Kim, Su‐Kyung</au><au>Kim, Woosik</au><au>Park, Taesung</au><au>Bang, Junsung</au><au>Ahn, Junhyuk</au><au>Woo, Ho Kun</au><au>Chae, Ji‐Yeon</au><au>Paik, Taejong</au><au>Seong, Tae‐Yeon</au><au>Oh, Soong Ju</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>All‐Solution Processed Multicolor Patterning Technique of Perovskite Nanocrystal for Color Pixel Array and Flexible Optoelectronic Devices</atitle><jtitle>Advanced optical materials</jtitle><date>2020-09-01</date><risdate>2020</risdate><volume>8</volume><issue>17</issue><epage>n/a</epage><issn>2195-1071</issn><eissn>2195-1071</eissn><abstract>In the present study, a new patterning method is introduced through the surface modification and stabilization of perovskite nanocrystals, which is compatible with conventional photolithography process based on all‐solution processes. Chemically designed gel‐type silica‐coated CsPbX3 (X = Br, I, etc.) perovskite nanocrystals combined with dip coating method are introduced to form stable and uniform films. Analyses of the physical and chemical states of nanocrystals and investigation of the kinetics in silica formation are conducted. In an optimized condition, physically uniform and chemically stable perovskite thin films are deposited on various substrates such as flexible, stretchable substrates, or even nonflat objects. By adopting these advantages and developing stable photolithographic chemicals, the high resolution patterns are successfully patterned with green and red emitting CsPbBr3 and CsPbBr3I3−x perovskites with the size down to 5 µm of radius and even a multicolor pixel array which can be used for the color filter, light converting or detecting applications. Flexible white light emitting diode is also fabricated with a large color gamut coverage. This work provides a fundamental understanding of perovskite nanocrystals, and also offers a technological breakthrough enabling various optoelectronic applications. Silica‐coated all inorganic lead halide perovskite nanocrystals are successfully patterned using conventional photolithography with all‐solution processes. The perovskite could be patterned up to 5 µm of radius using this technique. Multicolor patterning is likewise achieved. Flexible white light emitting diode is fabricated. To achieve this, gel‐type silica‐coated perovskite, dip‐coating, surface chemistry, and solvent engineering are systematically investigated and modulated.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adom.202000501</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-0787-2528</orcidid><orcidid>https://orcid.org/0000-0003-1434-8844</orcidid><orcidid>https://orcid.org/0000-0001-5904-8082</orcidid><orcidid>https://orcid.org/0000-0003-1477-9783</orcidid><orcidid>https://orcid.org/0000-0001-8148-9714</orcidid><orcidid>https://orcid.org/0000-0002-0673-6700</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2195-1071
ispartof Advanced optical materials, 2020-09, Vol.8 (17), p.n/a
issn 2195-1071
2195-1071
language eng
recordid cdi_proquest_journals_2440003201
source Wiley Online Library Journals Frontfile Complete
subjects all‐inorganic perovskites
Arrays
Color
color filter
Immersion coating
Light emitting diodes
Materials science
Nanocrystals
Optics
Optoelectronic devices
patterning
Perovskites
Photolithography
Pixels
Silica gel
Silicon dioxide
Substrates
surface modification
Thin films
White light
title All‐Solution Processed Multicolor Patterning Technique of Perovskite Nanocrystal for Color Pixel Array and Flexible Optoelectronic Devices
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-16T11%3A49%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=All%E2%80%90Solution%20Processed%20Multicolor%20Patterning%20Technique%20of%20Perovskite%20Nanocrystal%20for%20Color%20Pixel%20Array%20and%20Flexible%20Optoelectronic%20Devices&rft.jtitle=Advanced%20optical%20materials&rft.au=Jeon,%20Sanghyun&rft.date=2020-09-01&rft.volume=8&rft.issue=17&rft.epage=n/a&rft.issn=2195-1071&rft.eissn=2195-1071&rft_id=info:doi/10.1002/adom.202000501&rft_dat=%3Cproquest_cross%3E2440003201%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2440003201&rft_id=info:pmid/&rfr_iscdi=true