Extensions to the Proximal Distance Method of Constrained Optimization
The current paper studies the problem of minimizing a loss \(f(\boldsymbol{x})\) subject to constraints of the form \(\boldsymbol{D}\boldsymbol{x} \in S\), where \(S\) is a closed set, convex or not, and \(\boldsymbol{D}\) is a matrix that fuses parameters. Fusion constraints can capture smoothness,...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2022-01 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Landeros, Alfonso Oscar Hernan Madrid Padilla Zhou, Hua Lange, Kenneth |
description | The current paper studies the problem of minimizing a loss \(f(\boldsymbol{x})\) subject to constraints of the form \(\boldsymbol{D}\boldsymbol{x} \in S\), where \(S\) is a closed set, convex or not, and \(\boldsymbol{D}\) is a matrix that fuses parameters. Fusion constraints can capture smoothness, sparsity, or more general constraint patterns. To tackle this generic class of problems, we combine the Beltrami-Courant penalty method with the proximal distance principle. The latter is driven by minimization of penalized objectives \(f(\boldsymbol{x})+\frac{\rho}{2}\text{dist}(\boldsymbol{D}\boldsymbol{x},S)^2\) involving large tuning constants \(\rho\) and the squared Euclidean distance of \(\boldsymbol{D}\boldsymbol{x}\) from \(S\). The next iterate \(\boldsymbol{x}_{n+1}\) of the corresponding proximal distance algorithm is constructed from the current iterate \(\boldsymbol{x}_n\) by minimizing the majorizing surrogate function \(f(\boldsymbol{x})+\frac{\rho}{2}\|\boldsymbol{D}\boldsymbol{x}-\mathcal{P}_{S}(\boldsymbol{D}\boldsymbol{x}_n)\|^2\). For fixed \(\rho\) and a subanalytic loss \(f(\boldsymbol{x})\) and a subanalytic constraint set \(S\), we prove convergence to a stationary point. Under stronger assumptions, we provide convergence rates and demonstrate linear local convergence. We also construct a steepest descent (SD) variant to avoid costly linear system solves. To benchmark our algorithms, we compare against the alternating direction method of multipliers (ADMM). Our extensive numerical tests include problems on metric projection, convex regression, convex clustering, total variation image denoising, and projection of a matrix to a good condition number. These experiments demonstrate the superior speed and acceptable accuracy of our steepest variant on high-dimensional problems. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2439763128</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2439763128</sourcerecordid><originalsourceid>FETCH-proquest_journals_24397631283</originalsourceid><addsrcrecordid>eNqNi8sKgkAUQIcgSMp_uNBa0BlfrU1pE7VoL4NecURnbOYK0tfnog9odRbnnB3zuBBRkMecH5jv3BCGIU8zniTCY1W5EmqnjHZABqhHeFqzqkmOcFWOpG4Q7ki9acF0UGwdWak0tvCYSU3qI2mbT2zfydGh_-ORnavyVdyC2Zr3go7qwSxWb6rmsbhkqYh4Lv6rvuQvO6c</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2439763128</pqid></control><display><type>article</type><title>Extensions to the Proximal Distance Method of Constrained Optimization</title><source>Free E- Journals</source><creator>Landeros, Alfonso ; Oscar Hernan Madrid Padilla ; Zhou, Hua ; Lange, Kenneth</creator><creatorcontrib>Landeros, Alfonso ; Oscar Hernan Madrid Padilla ; Zhou, Hua ; Lange, Kenneth</creatorcontrib><description>The current paper studies the problem of minimizing a loss \(f(\boldsymbol{x})\) subject to constraints of the form \(\boldsymbol{D}\boldsymbol{x} \in S\), where \(S\) is a closed set, convex or not, and \(\boldsymbol{D}\) is a matrix that fuses parameters. Fusion constraints can capture smoothness, sparsity, or more general constraint patterns. To tackle this generic class of problems, we combine the Beltrami-Courant penalty method with the proximal distance principle. The latter is driven by minimization of penalized objectives \(f(\boldsymbol{x})+\frac{\rho}{2}\text{dist}(\boldsymbol{D}\boldsymbol{x},S)^2\) involving large tuning constants \(\rho\) and the squared Euclidean distance of \(\boldsymbol{D}\boldsymbol{x}\) from \(S\). The next iterate \(\boldsymbol{x}_{n+1}\) of the corresponding proximal distance algorithm is constructed from the current iterate \(\boldsymbol{x}_n\) by minimizing the majorizing surrogate function \(f(\boldsymbol{x})+\frac{\rho}{2}\|\boldsymbol{D}\boldsymbol{x}-\mathcal{P}_{S}(\boldsymbol{D}\boldsymbol{x}_n)\|^2\). For fixed \(\rho\) and a subanalytic loss \(f(\boldsymbol{x})\) and a subanalytic constraint set \(S\), we prove convergence to a stationary point. Under stronger assumptions, we provide convergence rates and demonstrate linear local convergence. We also construct a steepest descent (SD) variant to avoid costly linear system solves. To benchmark our algorithms, we compare against the alternating direction method of multipliers (ADMM). Our extensive numerical tests include problems on metric projection, convex regression, convex clustering, total variation image denoising, and projection of a matrix to a good condition number. These experiments demonstrate the superior speed and acceptable accuracy of our steepest variant on high-dimensional problems.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Algorithms ; Clustering ; Constraints ; Convergence ; Euclidean geometry ; Noise reduction ; Optimization ; Smoothness</subject><ispartof>arXiv.org, 2022-01</ispartof><rights>2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Landeros, Alfonso</creatorcontrib><creatorcontrib>Oscar Hernan Madrid Padilla</creatorcontrib><creatorcontrib>Zhou, Hua</creatorcontrib><creatorcontrib>Lange, Kenneth</creatorcontrib><title>Extensions to the Proximal Distance Method of Constrained Optimization</title><title>arXiv.org</title><description>The current paper studies the problem of minimizing a loss \(f(\boldsymbol{x})\) subject to constraints of the form \(\boldsymbol{D}\boldsymbol{x} \in S\), where \(S\) is a closed set, convex or not, and \(\boldsymbol{D}\) is a matrix that fuses parameters. Fusion constraints can capture smoothness, sparsity, or more general constraint patterns. To tackle this generic class of problems, we combine the Beltrami-Courant penalty method with the proximal distance principle. The latter is driven by minimization of penalized objectives \(f(\boldsymbol{x})+\frac{\rho}{2}\text{dist}(\boldsymbol{D}\boldsymbol{x},S)^2\) involving large tuning constants \(\rho\) and the squared Euclidean distance of \(\boldsymbol{D}\boldsymbol{x}\) from \(S\). The next iterate \(\boldsymbol{x}_{n+1}\) of the corresponding proximal distance algorithm is constructed from the current iterate \(\boldsymbol{x}_n\) by minimizing the majorizing surrogate function \(f(\boldsymbol{x})+\frac{\rho}{2}\|\boldsymbol{D}\boldsymbol{x}-\mathcal{P}_{S}(\boldsymbol{D}\boldsymbol{x}_n)\|^2\). For fixed \(\rho\) and a subanalytic loss \(f(\boldsymbol{x})\) and a subanalytic constraint set \(S\), we prove convergence to a stationary point. Under stronger assumptions, we provide convergence rates and demonstrate linear local convergence. We also construct a steepest descent (SD) variant to avoid costly linear system solves. To benchmark our algorithms, we compare against the alternating direction method of multipliers (ADMM). Our extensive numerical tests include problems on metric projection, convex regression, convex clustering, total variation image denoising, and projection of a matrix to a good condition number. These experiments demonstrate the superior speed and acceptable accuracy of our steepest variant on high-dimensional problems.</description><subject>Algorithms</subject><subject>Clustering</subject><subject>Constraints</subject><subject>Convergence</subject><subject>Euclidean geometry</subject><subject>Noise reduction</subject><subject>Optimization</subject><subject>Smoothness</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNi8sKgkAUQIcgSMp_uNBa0BlfrU1pE7VoL4NecURnbOYK0tfnog9odRbnnB3zuBBRkMecH5jv3BCGIU8zniTCY1W5EmqnjHZABqhHeFqzqkmOcFWOpG4Q7ki9acF0UGwdWak0tvCYSU3qI2mbT2zfydGh_-ORnavyVdyC2Zr3go7qwSxWb6rmsbhkqYh4Lv6rvuQvO6c</recordid><startdate>20220111</startdate><enddate>20220111</enddate><creator>Landeros, Alfonso</creator><creator>Oscar Hernan Madrid Padilla</creator><creator>Zhou, Hua</creator><creator>Lange, Kenneth</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20220111</creationdate><title>Extensions to the Proximal Distance Method of Constrained Optimization</title><author>Landeros, Alfonso ; Oscar Hernan Madrid Padilla ; Zhou, Hua ; Lange, Kenneth</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_24397631283</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Clustering</topic><topic>Constraints</topic><topic>Convergence</topic><topic>Euclidean geometry</topic><topic>Noise reduction</topic><topic>Optimization</topic><topic>Smoothness</topic><toplevel>online_resources</toplevel><creatorcontrib>Landeros, Alfonso</creatorcontrib><creatorcontrib>Oscar Hernan Madrid Padilla</creatorcontrib><creatorcontrib>Zhou, Hua</creatorcontrib><creatorcontrib>Lange, Kenneth</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Landeros, Alfonso</au><au>Oscar Hernan Madrid Padilla</au><au>Zhou, Hua</au><au>Lange, Kenneth</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Extensions to the Proximal Distance Method of Constrained Optimization</atitle><jtitle>arXiv.org</jtitle><date>2022-01-11</date><risdate>2022</risdate><eissn>2331-8422</eissn><abstract>The current paper studies the problem of minimizing a loss \(f(\boldsymbol{x})\) subject to constraints of the form \(\boldsymbol{D}\boldsymbol{x} \in S\), where \(S\) is a closed set, convex or not, and \(\boldsymbol{D}\) is a matrix that fuses parameters. Fusion constraints can capture smoothness, sparsity, or more general constraint patterns. To tackle this generic class of problems, we combine the Beltrami-Courant penalty method with the proximal distance principle. The latter is driven by minimization of penalized objectives \(f(\boldsymbol{x})+\frac{\rho}{2}\text{dist}(\boldsymbol{D}\boldsymbol{x},S)^2\) involving large tuning constants \(\rho\) and the squared Euclidean distance of \(\boldsymbol{D}\boldsymbol{x}\) from \(S\). The next iterate \(\boldsymbol{x}_{n+1}\) of the corresponding proximal distance algorithm is constructed from the current iterate \(\boldsymbol{x}_n\) by minimizing the majorizing surrogate function \(f(\boldsymbol{x})+\frac{\rho}{2}\|\boldsymbol{D}\boldsymbol{x}-\mathcal{P}_{S}(\boldsymbol{D}\boldsymbol{x}_n)\|^2\). For fixed \(\rho\) and a subanalytic loss \(f(\boldsymbol{x})\) and a subanalytic constraint set \(S\), we prove convergence to a stationary point. Under stronger assumptions, we provide convergence rates and demonstrate linear local convergence. We also construct a steepest descent (SD) variant to avoid costly linear system solves. To benchmark our algorithms, we compare against the alternating direction method of multipliers (ADMM). Our extensive numerical tests include problems on metric projection, convex regression, convex clustering, total variation image denoising, and projection of a matrix to a good condition number. These experiments demonstrate the superior speed and acceptable accuracy of our steepest variant on high-dimensional problems.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2022-01 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2439763128 |
source | Free E- Journals |
subjects | Algorithms Clustering Constraints Convergence Euclidean geometry Noise reduction Optimization Smoothness |
title | Extensions to the Proximal Distance Method of Constrained Optimization |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T15%3A43%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Extensions%20to%20the%20Proximal%20Distance%20Method%20of%20Constrained%20Optimization&rft.jtitle=arXiv.org&rft.au=Landeros,%20Alfonso&rft.date=2022-01-11&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2439763128%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2439763128&rft_id=info:pmid/&rfr_iscdi=true |