Extensions to the Proximal Distance Method of Constrained Optimization

The current paper studies the problem of minimizing a loss \(f(\boldsymbol{x})\) subject to constraints of the form \(\boldsymbol{D}\boldsymbol{x} \in S\), where \(S\) is a closed set, convex or not, and \(\boldsymbol{D}\) is a matrix that fuses parameters. Fusion constraints can capture smoothness,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2022-01
Hauptverfasser: Landeros, Alfonso, Oscar Hernan Madrid Padilla, Zhou, Hua, Lange, Kenneth
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Landeros, Alfonso
Oscar Hernan Madrid Padilla
Zhou, Hua
Lange, Kenneth
description The current paper studies the problem of minimizing a loss \(f(\boldsymbol{x})\) subject to constraints of the form \(\boldsymbol{D}\boldsymbol{x} \in S\), where \(S\) is a closed set, convex or not, and \(\boldsymbol{D}\) is a matrix that fuses parameters. Fusion constraints can capture smoothness, sparsity, or more general constraint patterns. To tackle this generic class of problems, we combine the Beltrami-Courant penalty method with the proximal distance principle. The latter is driven by minimization of penalized objectives \(f(\boldsymbol{x})+\frac{\rho}{2}\text{dist}(\boldsymbol{D}\boldsymbol{x},S)^2\) involving large tuning constants \(\rho\) and the squared Euclidean distance of \(\boldsymbol{D}\boldsymbol{x}\) from \(S\). The next iterate \(\boldsymbol{x}_{n+1}\) of the corresponding proximal distance algorithm is constructed from the current iterate \(\boldsymbol{x}_n\) by minimizing the majorizing surrogate function \(f(\boldsymbol{x})+\frac{\rho}{2}\|\boldsymbol{D}\boldsymbol{x}-\mathcal{P}_{S}(\boldsymbol{D}\boldsymbol{x}_n)\|^2\). For fixed \(\rho\) and a subanalytic loss \(f(\boldsymbol{x})\) and a subanalytic constraint set \(S\), we prove convergence to a stationary point. Under stronger assumptions, we provide convergence rates and demonstrate linear local convergence. We also construct a steepest descent (SD) variant to avoid costly linear system solves. To benchmark our algorithms, we compare against the alternating direction method of multipliers (ADMM). Our extensive numerical tests include problems on metric projection, convex regression, convex clustering, total variation image denoising, and projection of a matrix to a good condition number. These experiments demonstrate the superior speed and acceptable accuracy of our steepest variant on high-dimensional problems.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2439763128</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2439763128</sourcerecordid><originalsourceid>FETCH-proquest_journals_24397631283</originalsourceid><addsrcrecordid>eNqNi8sKgkAUQIcgSMp_uNBa0BlfrU1pE7VoL4NecURnbOYK0tfnog9odRbnnB3zuBBRkMecH5jv3BCGIU8zniTCY1W5EmqnjHZABqhHeFqzqkmOcFWOpG4Q7ki9acF0UGwdWak0tvCYSU3qI2mbT2zfydGh_-ORnavyVdyC2Zr3go7qwSxWb6rmsbhkqYh4Lv6rvuQvO6c</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2439763128</pqid></control><display><type>article</type><title>Extensions to the Proximal Distance Method of Constrained Optimization</title><source>Free E- Journals</source><creator>Landeros, Alfonso ; Oscar Hernan Madrid Padilla ; Zhou, Hua ; Lange, Kenneth</creator><creatorcontrib>Landeros, Alfonso ; Oscar Hernan Madrid Padilla ; Zhou, Hua ; Lange, Kenneth</creatorcontrib><description>The current paper studies the problem of minimizing a loss \(f(\boldsymbol{x})\) subject to constraints of the form \(\boldsymbol{D}\boldsymbol{x} \in S\), where \(S\) is a closed set, convex or not, and \(\boldsymbol{D}\) is a matrix that fuses parameters. Fusion constraints can capture smoothness, sparsity, or more general constraint patterns. To tackle this generic class of problems, we combine the Beltrami-Courant penalty method with the proximal distance principle. The latter is driven by minimization of penalized objectives \(f(\boldsymbol{x})+\frac{\rho}{2}\text{dist}(\boldsymbol{D}\boldsymbol{x},S)^2\) involving large tuning constants \(\rho\) and the squared Euclidean distance of \(\boldsymbol{D}\boldsymbol{x}\) from \(S\). The next iterate \(\boldsymbol{x}_{n+1}\) of the corresponding proximal distance algorithm is constructed from the current iterate \(\boldsymbol{x}_n\) by minimizing the majorizing surrogate function \(f(\boldsymbol{x})+\frac{\rho}{2}\|\boldsymbol{D}\boldsymbol{x}-\mathcal{P}_{S}(\boldsymbol{D}\boldsymbol{x}_n)\|^2\). For fixed \(\rho\) and a subanalytic loss \(f(\boldsymbol{x})\) and a subanalytic constraint set \(S\), we prove convergence to a stationary point. Under stronger assumptions, we provide convergence rates and demonstrate linear local convergence. We also construct a steepest descent (SD) variant to avoid costly linear system solves. To benchmark our algorithms, we compare against the alternating direction method of multipliers (ADMM). Our extensive numerical tests include problems on metric projection, convex regression, convex clustering, total variation image denoising, and projection of a matrix to a good condition number. These experiments demonstrate the superior speed and acceptable accuracy of our steepest variant on high-dimensional problems.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Algorithms ; Clustering ; Constraints ; Convergence ; Euclidean geometry ; Noise reduction ; Optimization ; Smoothness</subject><ispartof>arXiv.org, 2022-01</ispartof><rights>2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Landeros, Alfonso</creatorcontrib><creatorcontrib>Oscar Hernan Madrid Padilla</creatorcontrib><creatorcontrib>Zhou, Hua</creatorcontrib><creatorcontrib>Lange, Kenneth</creatorcontrib><title>Extensions to the Proximal Distance Method of Constrained Optimization</title><title>arXiv.org</title><description>The current paper studies the problem of minimizing a loss \(f(\boldsymbol{x})\) subject to constraints of the form \(\boldsymbol{D}\boldsymbol{x} \in S\), where \(S\) is a closed set, convex or not, and \(\boldsymbol{D}\) is a matrix that fuses parameters. Fusion constraints can capture smoothness, sparsity, or more general constraint patterns. To tackle this generic class of problems, we combine the Beltrami-Courant penalty method with the proximal distance principle. The latter is driven by minimization of penalized objectives \(f(\boldsymbol{x})+\frac{\rho}{2}\text{dist}(\boldsymbol{D}\boldsymbol{x},S)^2\) involving large tuning constants \(\rho\) and the squared Euclidean distance of \(\boldsymbol{D}\boldsymbol{x}\) from \(S\). The next iterate \(\boldsymbol{x}_{n+1}\) of the corresponding proximal distance algorithm is constructed from the current iterate \(\boldsymbol{x}_n\) by minimizing the majorizing surrogate function \(f(\boldsymbol{x})+\frac{\rho}{2}\|\boldsymbol{D}\boldsymbol{x}-\mathcal{P}_{S}(\boldsymbol{D}\boldsymbol{x}_n)\|^2\). For fixed \(\rho\) and a subanalytic loss \(f(\boldsymbol{x})\) and a subanalytic constraint set \(S\), we prove convergence to a stationary point. Under stronger assumptions, we provide convergence rates and demonstrate linear local convergence. We also construct a steepest descent (SD) variant to avoid costly linear system solves. To benchmark our algorithms, we compare against the alternating direction method of multipliers (ADMM). Our extensive numerical tests include problems on metric projection, convex regression, convex clustering, total variation image denoising, and projection of a matrix to a good condition number. These experiments demonstrate the superior speed and acceptable accuracy of our steepest variant on high-dimensional problems.</description><subject>Algorithms</subject><subject>Clustering</subject><subject>Constraints</subject><subject>Convergence</subject><subject>Euclidean geometry</subject><subject>Noise reduction</subject><subject>Optimization</subject><subject>Smoothness</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNi8sKgkAUQIcgSMp_uNBa0BlfrU1pE7VoL4NecURnbOYK0tfnog9odRbnnB3zuBBRkMecH5jv3BCGIU8zniTCY1W5EmqnjHZABqhHeFqzqkmOcFWOpG4Q7ki9acF0UGwdWak0tvCYSU3qI2mbT2zfydGh_-ORnavyVdyC2Zr3go7qwSxWb6rmsbhkqYh4Lv6rvuQvO6c</recordid><startdate>20220111</startdate><enddate>20220111</enddate><creator>Landeros, Alfonso</creator><creator>Oscar Hernan Madrid Padilla</creator><creator>Zhou, Hua</creator><creator>Lange, Kenneth</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20220111</creationdate><title>Extensions to the Proximal Distance Method of Constrained Optimization</title><author>Landeros, Alfonso ; Oscar Hernan Madrid Padilla ; Zhou, Hua ; Lange, Kenneth</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_24397631283</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Clustering</topic><topic>Constraints</topic><topic>Convergence</topic><topic>Euclidean geometry</topic><topic>Noise reduction</topic><topic>Optimization</topic><topic>Smoothness</topic><toplevel>online_resources</toplevel><creatorcontrib>Landeros, Alfonso</creatorcontrib><creatorcontrib>Oscar Hernan Madrid Padilla</creatorcontrib><creatorcontrib>Zhou, Hua</creatorcontrib><creatorcontrib>Lange, Kenneth</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Landeros, Alfonso</au><au>Oscar Hernan Madrid Padilla</au><au>Zhou, Hua</au><au>Lange, Kenneth</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Extensions to the Proximal Distance Method of Constrained Optimization</atitle><jtitle>arXiv.org</jtitle><date>2022-01-11</date><risdate>2022</risdate><eissn>2331-8422</eissn><abstract>The current paper studies the problem of minimizing a loss \(f(\boldsymbol{x})\) subject to constraints of the form \(\boldsymbol{D}\boldsymbol{x} \in S\), where \(S\) is a closed set, convex or not, and \(\boldsymbol{D}\) is a matrix that fuses parameters. Fusion constraints can capture smoothness, sparsity, or more general constraint patterns. To tackle this generic class of problems, we combine the Beltrami-Courant penalty method with the proximal distance principle. The latter is driven by minimization of penalized objectives \(f(\boldsymbol{x})+\frac{\rho}{2}\text{dist}(\boldsymbol{D}\boldsymbol{x},S)^2\) involving large tuning constants \(\rho\) and the squared Euclidean distance of \(\boldsymbol{D}\boldsymbol{x}\) from \(S\). The next iterate \(\boldsymbol{x}_{n+1}\) of the corresponding proximal distance algorithm is constructed from the current iterate \(\boldsymbol{x}_n\) by minimizing the majorizing surrogate function \(f(\boldsymbol{x})+\frac{\rho}{2}\|\boldsymbol{D}\boldsymbol{x}-\mathcal{P}_{S}(\boldsymbol{D}\boldsymbol{x}_n)\|^2\). For fixed \(\rho\) and a subanalytic loss \(f(\boldsymbol{x})\) and a subanalytic constraint set \(S\), we prove convergence to a stationary point. Under stronger assumptions, we provide convergence rates and demonstrate linear local convergence. We also construct a steepest descent (SD) variant to avoid costly linear system solves. To benchmark our algorithms, we compare against the alternating direction method of multipliers (ADMM). Our extensive numerical tests include problems on metric projection, convex regression, convex clustering, total variation image denoising, and projection of a matrix to a good condition number. These experiments demonstrate the superior speed and acceptable accuracy of our steepest variant on high-dimensional problems.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2022-01
issn 2331-8422
language eng
recordid cdi_proquest_journals_2439763128
source Free E- Journals
subjects Algorithms
Clustering
Constraints
Convergence
Euclidean geometry
Noise reduction
Optimization
Smoothness
title Extensions to the Proximal Distance Method of Constrained Optimization
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T15%3A43%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Extensions%20to%20the%20Proximal%20Distance%20Method%20of%20Constrained%20Optimization&rft.jtitle=arXiv.org&rft.au=Landeros,%20Alfonso&rft.date=2022-01-11&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2439763128%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2439763128&rft_id=info:pmid/&rfr_iscdi=true