Comprehensive Semantic Segmentation on High Resolution UAV Imagery for Natural Disaster Damage Assessment

In this paper, we present a large-scale hurricane Michael dataset for visual perception in disaster scenarios, and analyze state-of-the-art deep neural network models for semantic segmentation. The dataset consists of around 2000 high-resolution aerial images, with annotated ground-truth data for se...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2020-09
Hauptverfasser: Rahnemoonfar, Maryam, Chowdhury, Tashnim, Murphy, Robin, Fernandes, Odair
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Rahnemoonfar, Maryam
Chowdhury, Tashnim
Murphy, Robin
Fernandes, Odair
description In this paper, we present a large-scale hurricane Michael dataset for visual perception in disaster scenarios, and analyze state-of-the-art deep neural network models for semantic segmentation. The dataset consists of around 2000 high-resolution aerial images, with annotated ground-truth data for semantic segmentation. We discuss the challenges of the dataset and train the state-of-the-art methods on this dataset to evaluate how well these methods can recognize the disaster situations. Finally, we discuss challenges for future research.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2439762309</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2439762309</sourcerecordid><originalsourceid>FETCH-proquest_journals_24397623093</originalsourceid><addsrcrecordid>eNqNjN0KgkAUhJcgSKp3ONC1YLtaeSla2E0X_d3KEidd0V3bswa9fRY9QDAww3zDjJjHhVj6m5DzCZsT1UEQ8NWaR5HwmEpN21msUJN6Ipywldqp2xDKFrWTThkNg3JVVnBEMk3_rS7JFfatLNG-4G4sHKTrrWwgUyTJoYVMfigkREj0uZqx8V02hPOfT9litz2nud9Z8-iRXFGb3uoBFTwU8XrFRRCL_1Zvu69ITw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2439762309</pqid></control><display><type>article</type><title>Comprehensive Semantic Segmentation on High Resolution UAV Imagery for Natural Disaster Damage Assessment</title><source>Free E- Journals</source><creator>Rahnemoonfar, Maryam ; Chowdhury, Tashnim ; Murphy, Robin ; Fernandes, Odair</creator><creatorcontrib>Rahnemoonfar, Maryam ; Chowdhury, Tashnim ; Murphy, Robin ; Fernandes, Odair</creatorcontrib><description>In this paper, we present a large-scale hurricane Michael dataset for visual perception in disaster scenarios, and analyze state-of-the-art deep neural network models for semantic segmentation. The dataset consists of around 2000 high-resolution aerial images, with annotated ground-truth data for semantic segmentation. We discuss the challenges of the dataset and train the state-of-the-art methods on this dataset to evaluate how well these methods can recognize the disaster situations. Finally, we discuss challenges for future research.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Artificial neural networks ; Datasets ; High resolution ; Image resolution ; Image segmentation ; Natural disasters ; Semantic segmentation ; Semantics ; Visual perception</subject><ispartof>arXiv.org, 2020-09</ispartof><rights>2020. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Rahnemoonfar, Maryam</creatorcontrib><creatorcontrib>Chowdhury, Tashnim</creatorcontrib><creatorcontrib>Murphy, Robin</creatorcontrib><creatorcontrib>Fernandes, Odair</creatorcontrib><title>Comprehensive Semantic Segmentation on High Resolution UAV Imagery for Natural Disaster Damage Assessment</title><title>arXiv.org</title><description>In this paper, we present a large-scale hurricane Michael dataset for visual perception in disaster scenarios, and analyze state-of-the-art deep neural network models for semantic segmentation. The dataset consists of around 2000 high-resolution aerial images, with annotated ground-truth data for semantic segmentation. We discuss the challenges of the dataset and train the state-of-the-art methods on this dataset to evaluate how well these methods can recognize the disaster situations. Finally, we discuss challenges for future research.</description><subject>Artificial neural networks</subject><subject>Datasets</subject><subject>High resolution</subject><subject>Image resolution</subject><subject>Image segmentation</subject><subject>Natural disasters</subject><subject>Semantic segmentation</subject><subject>Semantics</subject><subject>Visual perception</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNjN0KgkAUhJcgSKp3ONC1YLtaeSla2E0X_d3KEidd0V3bswa9fRY9QDAww3zDjJjHhVj6m5DzCZsT1UEQ8NWaR5HwmEpN21msUJN6Ipywldqp2xDKFrWTThkNg3JVVnBEMk3_rS7JFfatLNG-4G4sHKTrrWwgUyTJoYVMfigkREj0uZqx8V02hPOfT9litz2nud9Z8-iRXFGb3uoBFTwU8XrFRRCL_1Zvu69ITw</recordid><startdate>20200906</startdate><enddate>20200906</enddate><creator>Rahnemoonfar, Maryam</creator><creator>Chowdhury, Tashnim</creator><creator>Murphy, Robin</creator><creator>Fernandes, Odair</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20200906</creationdate><title>Comprehensive Semantic Segmentation on High Resolution UAV Imagery for Natural Disaster Damage Assessment</title><author>Rahnemoonfar, Maryam ; Chowdhury, Tashnim ; Murphy, Robin ; Fernandes, Odair</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_24397623093</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Artificial neural networks</topic><topic>Datasets</topic><topic>High resolution</topic><topic>Image resolution</topic><topic>Image segmentation</topic><topic>Natural disasters</topic><topic>Semantic segmentation</topic><topic>Semantics</topic><topic>Visual perception</topic><toplevel>online_resources</toplevel><creatorcontrib>Rahnemoonfar, Maryam</creatorcontrib><creatorcontrib>Chowdhury, Tashnim</creatorcontrib><creatorcontrib>Murphy, Robin</creatorcontrib><creatorcontrib>Fernandes, Odair</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rahnemoonfar, Maryam</au><au>Chowdhury, Tashnim</au><au>Murphy, Robin</au><au>Fernandes, Odair</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Comprehensive Semantic Segmentation on High Resolution UAV Imagery for Natural Disaster Damage Assessment</atitle><jtitle>arXiv.org</jtitle><date>2020-09-06</date><risdate>2020</risdate><eissn>2331-8422</eissn><abstract>In this paper, we present a large-scale hurricane Michael dataset for visual perception in disaster scenarios, and analyze state-of-the-art deep neural network models for semantic segmentation. The dataset consists of around 2000 high-resolution aerial images, with annotated ground-truth data for semantic segmentation. We discuss the challenges of the dataset and train the state-of-the-art methods on this dataset to evaluate how well these methods can recognize the disaster situations. Finally, we discuss challenges for future research.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2020-09
issn 2331-8422
language eng
recordid cdi_proquest_journals_2439762309
source Free E- Journals
subjects Artificial neural networks
Datasets
High resolution
Image resolution
Image segmentation
Natural disasters
Semantic segmentation
Semantics
Visual perception
title Comprehensive Semantic Segmentation on High Resolution UAV Imagery for Natural Disaster Damage Assessment
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T10%3A12%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Comprehensive%20Semantic%20Segmentation%20on%20High%20Resolution%20UAV%20Imagery%20for%20Natural%20Disaster%20Damage%20Assessment&rft.jtitle=arXiv.org&rft.au=Rahnemoonfar,%20Maryam&rft.date=2020-09-06&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2439762309%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2439762309&rft_id=info:pmid/&rfr_iscdi=true