Computing critical points for invariant algebraic systems

Let \(\mathbf{K}\) be a field and \(\phi\), \(\mathbf{f} = (f_1, \ldots, f_s)\) in \(\mathbf{K}[x_1, \dots, x_n]\) be multivariate polynomials (with \(s < n\)) invariant under the action of \(\mathcal{S}_n\), the group of permutations of \(\{1, \dots, n\}\). We consider the problem of computing t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2020-09
Hauptverfasser: Jean-Charles Faugère, Labahn, George, Mohab Safey El Din, Schost, Éric, Vu, Thi Xuan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Jean-Charles Faugère
Labahn, George
Mohab Safey El Din
Schost, Éric
Vu, Thi Xuan
description Let \(\mathbf{K}\) be a field and \(\phi\), \(\mathbf{f} = (f_1, \ldots, f_s)\) in \(\mathbf{K}[x_1, \dots, x_n]\) be multivariate polynomials (with \(s < n\)) invariant under the action of \(\mathcal{S}_n\), the group of permutations of \(\{1, \dots, n\}\). We consider the problem of computing the points at which \(\mathbf{f}\) vanish and the Jacobian matrix associated to \(\mathbf{f}, \phi\) is rank deficient provided that this set is finite. We exploit the invariance properties of the input to split the solution space according to the orbits of \(\mathcal{S}_n\). This allows us to design an algorithm which gives a triangular description of the solution space and which runs in time polynomial in \(d^s\), \({{n+d}\choose{d}}\) and \(\binom{n}{s+1}\) where \(d\) is the maximum degree of the input polynomials. When \(d,s\) are fixed, this is polynomial in \(n\) while when \(s\) is fixed and \(d \simeq n\) this yields an exponential speed-up with respect to the usual polynomial system solving algorithms.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2439762293</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2439762293</sourcerecordid><originalsourceid>FETCH-proquest_journals_24397622933</originalsourceid><addsrcrecordid>eNqNyk0KwjAQQOEgCBbtHQKuC3XSH7MuigdwX2JIy5Q0iZlE8Pa68ACu3uJ7G1aAEKfq3ADsWEm01HUNXQ9tKwomB7-GnNDNXEdMqJXlwaNLxCcfObqXiqhc4srO5hEVak5vSmalA9tOypIpf92z4_VyH25ViP6ZDaVx8Tm6L43QCNl3AFKI_64P3aM3Pw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2439762293</pqid></control><display><type>article</type><title>Computing critical points for invariant algebraic systems</title><source>Free E- Journals</source><creator>Jean-Charles Faugère ; Labahn, George ; Mohab Safey El Din ; Schost, Éric ; Vu, Thi Xuan</creator><creatorcontrib>Jean-Charles Faugère ; Labahn, George ; Mohab Safey El Din ; Schost, Éric ; Vu, Thi Xuan</creatorcontrib><description>Let \(\mathbf{K}\) be a field and \(\phi\), \(\mathbf{f} = (f_1, \ldots, f_s)\) in \(\mathbf{K}[x_1, \dots, x_n]\) be multivariate polynomials (with \(s &lt; n\)) invariant under the action of \(\mathcal{S}_n\), the group of permutations of \(\{1, \dots, n\}\). We consider the problem of computing the points at which \(\mathbf{f}\) vanish and the Jacobian matrix associated to \(\mathbf{f}, \phi\) is rank deficient provided that this set is finite. We exploit the invariance properties of the input to split the solution space according to the orbits of \(\mathcal{S}_n\). This allows us to design an algorithm which gives a triangular description of the solution space and which runs in time polynomial in \(d^s\), \({{n+d}\choose{d}}\) and \(\binom{n}{s+1}\) where \(d\) is the maximum degree of the input polynomials. When \(d,s\) are fixed, this is polynomial in \(n\) while when \(s\) is fixed and \(d \simeq n\) this yields an exponential speed-up with respect to the usual polynomial system solving algorithms.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Algorithms ; Computation ; Critical point ; Invariants ; Jacobi matrix method ; Jacobian matrix ; Permutations ; Polynomials ; Solution space</subject><ispartof>arXiv.org, 2020-09</ispartof><rights>2020. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Jean-Charles Faugère</creatorcontrib><creatorcontrib>Labahn, George</creatorcontrib><creatorcontrib>Mohab Safey El Din</creatorcontrib><creatorcontrib>Schost, Éric</creatorcontrib><creatorcontrib>Vu, Thi Xuan</creatorcontrib><title>Computing critical points for invariant algebraic systems</title><title>arXiv.org</title><description>Let \(\mathbf{K}\) be a field and \(\phi\), \(\mathbf{f} = (f_1, \ldots, f_s)\) in \(\mathbf{K}[x_1, \dots, x_n]\) be multivariate polynomials (with \(s &lt; n\)) invariant under the action of \(\mathcal{S}_n\), the group of permutations of \(\{1, \dots, n\}\). We consider the problem of computing the points at which \(\mathbf{f}\) vanish and the Jacobian matrix associated to \(\mathbf{f}, \phi\) is rank deficient provided that this set is finite. We exploit the invariance properties of the input to split the solution space according to the orbits of \(\mathcal{S}_n\). This allows us to design an algorithm which gives a triangular description of the solution space and which runs in time polynomial in \(d^s\), \({{n+d}\choose{d}}\) and \(\binom{n}{s+1}\) where \(d\) is the maximum degree of the input polynomials. When \(d,s\) are fixed, this is polynomial in \(n\) while when \(s\) is fixed and \(d \simeq n\) this yields an exponential speed-up with respect to the usual polynomial system solving algorithms.</description><subject>Algorithms</subject><subject>Computation</subject><subject>Critical point</subject><subject>Invariants</subject><subject>Jacobi matrix method</subject><subject>Jacobian matrix</subject><subject>Permutations</subject><subject>Polynomials</subject><subject>Solution space</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNyk0KwjAQQOEgCBbtHQKuC3XSH7MuigdwX2JIy5Q0iZlE8Pa68ACu3uJ7G1aAEKfq3ADsWEm01HUNXQ9tKwomB7-GnNDNXEdMqJXlwaNLxCcfObqXiqhc4srO5hEVak5vSmalA9tOypIpf92z4_VyH25ViP6ZDaVx8Tm6L43QCNl3AFKI_64P3aM3Pw</recordid><startdate>20200902</startdate><enddate>20200902</enddate><creator>Jean-Charles Faugère</creator><creator>Labahn, George</creator><creator>Mohab Safey El Din</creator><creator>Schost, Éric</creator><creator>Vu, Thi Xuan</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20200902</creationdate><title>Computing critical points for invariant algebraic systems</title><author>Jean-Charles Faugère ; Labahn, George ; Mohab Safey El Din ; Schost, Éric ; Vu, Thi Xuan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_24397622933</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Computation</topic><topic>Critical point</topic><topic>Invariants</topic><topic>Jacobi matrix method</topic><topic>Jacobian matrix</topic><topic>Permutations</topic><topic>Polynomials</topic><topic>Solution space</topic><toplevel>online_resources</toplevel><creatorcontrib>Jean-Charles Faugère</creatorcontrib><creatorcontrib>Labahn, George</creatorcontrib><creatorcontrib>Mohab Safey El Din</creatorcontrib><creatorcontrib>Schost, Éric</creatorcontrib><creatorcontrib>Vu, Thi Xuan</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jean-Charles Faugère</au><au>Labahn, George</au><au>Mohab Safey El Din</au><au>Schost, Éric</au><au>Vu, Thi Xuan</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Computing critical points for invariant algebraic systems</atitle><jtitle>arXiv.org</jtitle><date>2020-09-02</date><risdate>2020</risdate><eissn>2331-8422</eissn><abstract>Let \(\mathbf{K}\) be a field and \(\phi\), \(\mathbf{f} = (f_1, \ldots, f_s)\) in \(\mathbf{K}[x_1, \dots, x_n]\) be multivariate polynomials (with \(s &lt; n\)) invariant under the action of \(\mathcal{S}_n\), the group of permutations of \(\{1, \dots, n\}\). We consider the problem of computing the points at which \(\mathbf{f}\) vanish and the Jacobian matrix associated to \(\mathbf{f}, \phi\) is rank deficient provided that this set is finite. We exploit the invariance properties of the input to split the solution space according to the orbits of \(\mathcal{S}_n\). This allows us to design an algorithm which gives a triangular description of the solution space and which runs in time polynomial in \(d^s\), \({{n+d}\choose{d}}\) and \(\binom{n}{s+1}\) where \(d\) is the maximum degree of the input polynomials. When \(d,s\) are fixed, this is polynomial in \(n\) while when \(s\) is fixed and \(d \simeq n\) this yields an exponential speed-up with respect to the usual polynomial system solving algorithms.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2020-09
issn 2331-8422
language eng
recordid cdi_proquest_journals_2439762293
source Free E- Journals
subjects Algorithms
Computation
Critical point
Invariants
Jacobi matrix method
Jacobian matrix
Permutations
Polynomials
Solution space
title Computing critical points for invariant algebraic systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T01%3A16%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Computing%20critical%20points%20for%20invariant%20algebraic%20systems&rft.jtitle=arXiv.org&rft.au=Jean-Charles%20Faug%C3%A8re&rft.date=2020-09-02&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2439762293%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2439762293&rft_id=info:pmid/&rfr_iscdi=true