Computing critical points for invariant algebraic systems
Let \(\mathbf{K}\) be a field and \(\phi\), \(\mathbf{f} = (f_1, \ldots, f_s)\) in \(\mathbf{K}[x_1, \dots, x_n]\) be multivariate polynomials (with \(s < n\)) invariant under the action of \(\mathcal{S}_n\), the group of permutations of \(\{1, \dots, n\}\). We consider the problem of computing t...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2020-09 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Jean-Charles Faugère Labahn, George Mohab Safey El Din Schost, Éric Vu, Thi Xuan |
description | Let \(\mathbf{K}\) be a field and \(\phi\), \(\mathbf{f} = (f_1, \ldots, f_s)\) in \(\mathbf{K}[x_1, \dots, x_n]\) be multivariate polynomials (with \(s < n\)) invariant under the action of \(\mathcal{S}_n\), the group of permutations of \(\{1, \dots, n\}\). We consider the problem of computing the points at which \(\mathbf{f}\) vanish and the Jacobian matrix associated to \(\mathbf{f}, \phi\) is rank deficient provided that this set is finite. We exploit the invariance properties of the input to split the solution space according to the orbits of \(\mathcal{S}_n\). This allows us to design an algorithm which gives a triangular description of the solution space and which runs in time polynomial in \(d^s\), \({{n+d}\choose{d}}\) and \(\binom{n}{s+1}\) where \(d\) is the maximum degree of the input polynomials. When \(d,s\) are fixed, this is polynomial in \(n\) while when \(s\) is fixed and \(d \simeq n\) this yields an exponential speed-up with respect to the usual polynomial system solving algorithms. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2439762293</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2439762293</sourcerecordid><originalsourceid>FETCH-proquest_journals_24397622933</originalsourceid><addsrcrecordid>eNqNyk0KwjAQQOEgCBbtHQKuC3XSH7MuigdwX2JIy5Q0iZlE8Pa68ACu3uJ7G1aAEKfq3ADsWEm01HUNXQ9tKwomB7-GnNDNXEdMqJXlwaNLxCcfObqXiqhc4srO5hEVak5vSmalA9tOypIpf92z4_VyH25ViP6ZDaVx8Tm6L43QCNl3AFKI_64P3aM3Pw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2439762293</pqid></control><display><type>article</type><title>Computing critical points for invariant algebraic systems</title><source>Free E- Journals</source><creator>Jean-Charles Faugère ; Labahn, George ; Mohab Safey El Din ; Schost, Éric ; Vu, Thi Xuan</creator><creatorcontrib>Jean-Charles Faugère ; Labahn, George ; Mohab Safey El Din ; Schost, Éric ; Vu, Thi Xuan</creatorcontrib><description>Let \(\mathbf{K}\) be a field and \(\phi\), \(\mathbf{f} = (f_1, \ldots, f_s)\) in \(\mathbf{K}[x_1, \dots, x_n]\) be multivariate polynomials (with \(s < n\)) invariant under the action of \(\mathcal{S}_n\), the group of permutations of \(\{1, \dots, n\}\). We consider the problem of computing the points at which \(\mathbf{f}\) vanish and the Jacobian matrix associated to \(\mathbf{f}, \phi\) is rank deficient provided that this set is finite. We exploit the invariance properties of the input to split the solution space according to the orbits of \(\mathcal{S}_n\). This allows us to design an algorithm which gives a triangular description of the solution space and which runs in time polynomial in \(d^s\), \({{n+d}\choose{d}}\) and \(\binom{n}{s+1}\) where \(d\) is the maximum degree of the input polynomials. When \(d,s\) are fixed, this is polynomial in \(n\) while when \(s\) is fixed and \(d \simeq n\) this yields an exponential speed-up with respect to the usual polynomial system solving algorithms.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Algorithms ; Computation ; Critical point ; Invariants ; Jacobi matrix method ; Jacobian matrix ; Permutations ; Polynomials ; Solution space</subject><ispartof>arXiv.org, 2020-09</ispartof><rights>2020. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Jean-Charles Faugère</creatorcontrib><creatorcontrib>Labahn, George</creatorcontrib><creatorcontrib>Mohab Safey El Din</creatorcontrib><creatorcontrib>Schost, Éric</creatorcontrib><creatorcontrib>Vu, Thi Xuan</creatorcontrib><title>Computing critical points for invariant algebraic systems</title><title>arXiv.org</title><description>Let \(\mathbf{K}\) be a field and \(\phi\), \(\mathbf{f} = (f_1, \ldots, f_s)\) in \(\mathbf{K}[x_1, \dots, x_n]\) be multivariate polynomials (with \(s < n\)) invariant under the action of \(\mathcal{S}_n\), the group of permutations of \(\{1, \dots, n\}\). We consider the problem of computing the points at which \(\mathbf{f}\) vanish and the Jacobian matrix associated to \(\mathbf{f}, \phi\) is rank deficient provided that this set is finite. We exploit the invariance properties of the input to split the solution space according to the orbits of \(\mathcal{S}_n\). This allows us to design an algorithm which gives a triangular description of the solution space and which runs in time polynomial in \(d^s\), \({{n+d}\choose{d}}\) and \(\binom{n}{s+1}\) where \(d\) is the maximum degree of the input polynomials. When \(d,s\) are fixed, this is polynomial in \(n\) while when \(s\) is fixed and \(d \simeq n\) this yields an exponential speed-up with respect to the usual polynomial system solving algorithms.</description><subject>Algorithms</subject><subject>Computation</subject><subject>Critical point</subject><subject>Invariants</subject><subject>Jacobi matrix method</subject><subject>Jacobian matrix</subject><subject>Permutations</subject><subject>Polynomials</subject><subject>Solution space</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNyk0KwjAQQOEgCBbtHQKuC3XSH7MuigdwX2JIy5Q0iZlE8Pa68ACu3uJ7G1aAEKfq3ADsWEm01HUNXQ9tKwomB7-GnNDNXEdMqJXlwaNLxCcfObqXiqhc4srO5hEVak5vSmalA9tOypIpf92z4_VyH25ViP6ZDaVx8Tm6L43QCNl3AFKI_64P3aM3Pw</recordid><startdate>20200902</startdate><enddate>20200902</enddate><creator>Jean-Charles Faugère</creator><creator>Labahn, George</creator><creator>Mohab Safey El Din</creator><creator>Schost, Éric</creator><creator>Vu, Thi Xuan</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20200902</creationdate><title>Computing critical points for invariant algebraic systems</title><author>Jean-Charles Faugère ; Labahn, George ; Mohab Safey El Din ; Schost, Éric ; Vu, Thi Xuan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_24397622933</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Computation</topic><topic>Critical point</topic><topic>Invariants</topic><topic>Jacobi matrix method</topic><topic>Jacobian matrix</topic><topic>Permutations</topic><topic>Polynomials</topic><topic>Solution space</topic><toplevel>online_resources</toplevel><creatorcontrib>Jean-Charles Faugère</creatorcontrib><creatorcontrib>Labahn, George</creatorcontrib><creatorcontrib>Mohab Safey El Din</creatorcontrib><creatorcontrib>Schost, Éric</creatorcontrib><creatorcontrib>Vu, Thi Xuan</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jean-Charles Faugère</au><au>Labahn, George</au><au>Mohab Safey El Din</au><au>Schost, Éric</au><au>Vu, Thi Xuan</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Computing critical points for invariant algebraic systems</atitle><jtitle>arXiv.org</jtitle><date>2020-09-02</date><risdate>2020</risdate><eissn>2331-8422</eissn><abstract>Let \(\mathbf{K}\) be a field and \(\phi\), \(\mathbf{f} = (f_1, \ldots, f_s)\) in \(\mathbf{K}[x_1, \dots, x_n]\) be multivariate polynomials (with \(s < n\)) invariant under the action of \(\mathcal{S}_n\), the group of permutations of \(\{1, \dots, n\}\). We consider the problem of computing the points at which \(\mathbf{f}\) vanish and the Jacobian matrix associated to \(\mathbf{f}, \phi\) is rank deficient provided that this set is finite. We exploit the invariance properties of the input to split the solution space according to the orbits of \(\mathcal{S}_n\). This allows us to design an algorithm which gives a triangular description of the solution space and which runs in time polynomial in \(d^s\), \({{n+d}\choose{d}}\) and \(\binom{n}{s+1}\) where \(d\) is the maximum degree of the input polynomials. When \(d,s\) are fixed, this is polynomial in \(n\) while when \(s\) is fixed and \(d \simeq n\) this yields an exponential speed-up with respect to the usual polynomial system solving algorithms.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2020-09 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2439762293 |
source | Free E- Journals |
subjects | Algorithms Computation Critical point Invariants Jacobi matrix method Jacobian matrix Permutations Polynomials Solution space |
title | Computing critical points for invariant algebraic systems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T01%3A16%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Computing%20critical%20points%20for%20invariant%20algebraic%20systems&rft.jtitle=arXiv.org&rft.au=Jean-Charles%20Faug%C3%A8re&rft.date=2020-09-02&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2439762293%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2439762293&rft_id=info:pmid/&rfr_iscdi=true |