Biomimetic Energy-Based Humanoid Gait Design

One of the challenges facing humanoid robots is the design of a more human-like gait. In this paper, we propose a new paradigm for gait design for humanoids that is founded in the field of Kinesiology and is based on energy-exchange between potential and kinetic energies. Additionally, we propose an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of intelligent & robotic systems 2020-10, Vol.100 (1), p.203-221
Hauptverfasser: Maalouf, Noel, Elhajj, Imad H., Shammas, Elie, Asmar, Daniel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 221
container_issue 1
container_start_page 203
container_title Journal of intelligent & robotic systems
container_volume 100
creator Maalouf, Noel
Elhajj, Imad H.
Shammas, Elie
Asmar, Daniel
description One of the challenges facing humanoid robots is the design of a more human-like gait. In this paper, we propose a new paradigm for gait design for humanoids that is founded in the field of Kinesiology and is based on energy-exchange between potential and kinetic energies. Additionally, we propose an energy-based controller, which not only maintains the desired gait but is also more efficient than current controllers in terms of energy expenditure and joint motor torque exertion. Experiments were performed in simulation on Webots and on an actual humanoid platform, the Nao. Results indicate an improvement in mechanical energy consumption by 10% in simulations, and 1.8% on the Nao. Qualitatively, the proposed gait yielded motions that are more human-like.
doi_str_mv 10.1007/s10846-020-01179-z
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2439758467</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A724156813</galeid><sourcerecordid>A724156813</sourcerecordid><originalsourceid>FETCH-LOGICAL-c358t-95ba9034e6a608616dc97d3519953411ac926d6e75144e66e38d54238a60ef7a3</originalsourceid><addsrcrecordid>eNp9kD1PwzAQhi0EEqXwB5giseJyjr_isS2lIFVigdkyySVy1STFTof212MIEhu6wdL5eXznl5BbBjMGoB8ig0IoCjlQYEwbejojEyY1pyDAnJMJmJyla6MuyVWMWwAwhTQTcr_wfetbHHyZrToMzZEuXMQqez60rut9la2dH7JHjL7prslF7XYRb37PKXl_Wr0tn-nmdf2ynG9oyWUxUCM_nAEuUDkFhWKqKo2uuGTGSC4Yc6XJVaVQSyYSpJAXlRQ5LxKOtXZ8Su7Gd_eh_zxgHOy2P4QujbS54EbL9FedqNlINW6H1nd1PwRXpqqw9WXfYe1Tf65zwaQqGE9CPgpl6GMMWNt98K0LR8vAfsdoxxhtitH-xGhPSeKjFBPcNRj-dvnH-gL53HJ-</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2439758467</pqid></control><display><type>article</type><title>Biomimetic Energy-Based Humanoid Gait Design</title><source>SpringerLink Journals - AutoHoldings</source><creator>Maalouf, Noel ; Elhajj, Imad H. ; Shammas, Elie ; Asmar, Daniel</creator><creatorcontrib>Maalouf, Noel ; Elhajj, Imad H. ; Shammas, Elie ; Asmar, Daniel</creatorcontrib><description>One of the challenges facing humanoid robots is the design of a more human-like gait. In this paper, we propose a new paradigm for gait design for humanoids that is founded in the field of Kinesiology and is based on energy-exchange between potential and kinetic energies. Additionally, we propose an energy-based controller, which not only maintains the desired gait but is also more efficient than current controllers in terms of energy expenditure and joint motor torque exertion. Experiments were performed in simulation on Webots and on an actual humanoid platform, the Nao. Results indicate an improvement in mechanical energy consumption by 10% in simulations, and 1.8% on the Nao. Qualitatively, the proposed gait yielded motions that are more human-like.</description><identifier>ISSN: 0921-0296</identifier><identifier>EISSN: 1573-0409</identifier><identifier>DOI: 10.1007/s10846-020-01179-z</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Artificial Intelligence ; Biomimetics ; Control ; Electrical Engineering ; Energy consumption ; Engineering ; Force and energy ; Gait ; Humanoid ; Mechanical Engineering ; Mechatronics ; Robotics ; Robots ; Torque exertion, Ergonomic</subject><ispartof>Journal of intelligent &amp; robotic systems, 2020-10, Vol.100 (1), p.203-221</ispartof><rights>Springer Nature B.V. 2020</rights><rights>COPYRIGHT 2020 Springer</rights><rights>Springer Nature B.V. 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c358t-95ba9034e6a608616dc97d3519953411ac926d6e75144e66e38d54238a60ef7a3</citedby><cites>FETCH-LOGICAL-c358t-95ba9034e6a608616dc97d3519953411ac926d6e75144e66e38d54238a60ef7a3</cites><orcidid>0000-0001-7536-4261</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10846-020-01179-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10846-020-01179-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Maalouf, Noel</creatorcontrib><creatorcontrib>Elhajj, Imad H.</creatorcontrib><creatorcontrib>Shammas, Elie</creatorcontrib><creatorcontrib>Asmar, Daniel</creatorcontrib><title>Biomimetic Energy-Based Humanoid Gait Design</title><title>Journal of intelligent &amp; robotic systems</title><addtitle>J Intell Robot Syst</addtitle><description>One of the challenges facing humanoid robots is the design of a more human-like gait. In this paper, we propose a new paradigm for gait design for humanoids that is founded in the field of Kinesiology and is based on energy-exchange between potential and kinetic energies. Additionally, we propose an energy-based controller, which not only maintains the desired gait but is also more efficient than current controllers in terms of energy expenditure and joint motor torque exertion. Experiments were performed in simulation on Webots and on an actual humanoid platform, the Nao. Results indicate an improvement in mechanical energy consumption by 10% in simulations, and 1.8% on the Nao. Qualitatively, the proposed gait yielded motions that are more human-like.</description><subject>Artificial Intelligence</subject><subject>Biomimetics</subject><subject>Control</subject><subject>Electrical Engineering</subject><subject>Energy consumption</subject><subject>Engineering</subject><subject>Force and energy</subject><subject>Gait</subject><subject>Humanoid</subject><subject>Mechanical Engineering</subject><subject>Mechatronics</subject><subject>Robotics</subject><subject>Robots</subject><subject>Torque exertion, Ergonomic</subject><issn>0921-0296</issn><issn>1573-0409</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kD1PwzAQhi0EEqXwB5giseJyjr_isS2lIFVigdkyySVy1STFTof212MIEhu6wdL5eXznl5BbBjMGoB8ig0IoCjlQYEwbejojEyY1pyDAnJMJmJyla6MuyVWMWwAwhTQTcr_wfetbHHyZrToMzZEuXMQqez60rut9la2dH7JHjL7prslF7XYRb37PKXl_Wr0tn-nmdf2ynG9oyWUxUCM_nAEuUDkFhWKqKo2uuGTGSC4Yc6XJVaVQSyYSpJAXlRQ5LxKOtXZ8Su7Gd_eh_zxgHOy2P4QujbS54EbL9FedqNlINW6H1nd1PwRXpqqw9WXfYe1Tf65zwaQqGE9CPgpl6GMMWNt98K0LR8vAfsdoxxhtitH-xGhPSeKjFBPcNRj-dvnH-gL53HJ-</recordid><startdate>20201001</startdate><enddate>20201001</enddate><creator>Maalouf, Noel</creator><creator>Elhajj, Imad H.</creator><creator>Shammas, Elie</creator><creator>Asmar, Daniel</creator><general>Springer Netherlands</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>7XB</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0001-7536-4261</orcidid></search><sort><creationdate>20201001</creationdate><title>Biomimetic Energy-Based Humanoid Gait Design</title><author>Maalouf, Noel ; Elhajj, Imad H. ; Shammas, Elie ; Asmar, Daniel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c358t-95ba9034e6a608616dc97d3519953411ac926d6e75144e66e38d54238a60ef7a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Artificial Intelligence</topic><topic>Biomimetics</topic><topic>Control</topic><topic>Electrical Engineering</topic><topic>Energy consumption</topic><topic>Engineering</topic><topic>Force and energy</topic><topic>Gait</topic><topic>Humanoid</topic><topic>Mechanical Engineering</topic><topic>Mechatronics</topic><topic>Robotics</topic><topic>Robots</topic><topic>Torque exertion, Ergonomic</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Maalouf, Noel</creatorcontrib><creatorcontrib>Elhajj, Imad H.</creatorcontrib><creatorcontrib>Shammas, Elie</creatorcontrib><creatorcontrib>Asmar, Daniel</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Journal of intelligent &amp; robotic systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Maalouf, Noel</au><au>Elhajj, Imad H.</au><au>Shammas, Elie</au><au>Asmar, Daniel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Biomimetic Energy-Based Humanoid Gait Design</atitle><jtitle>Journal of intelligent &amp; robotic systems</jtitle><stitle>J Intell Robot Syst</stitle><date>2020-10-01</date><risdate>2020</risdate><volume>100</volume><issue>1</issue><spage>203</spage><epage>221</epage><pages>203-221</pages><issn>0921-0296</issn><eissn>1573-0409</eissn><abstract>One of the challenges facing humanoid robots is the design of a more human-like gait. In this paper, we propose a new paradigm for gait design for humanoids that is founded in the field of Kinesiology and is based on energy-exchange between potential and kinetic energies. Additionally, we propose an energy-based controller, which not only maintains the desired gait but is also more efficient than current controllers in terms of energy expenditure and joint motor torque exertion. Experiments were performed in simulation on Webots and on an actual humanoid platform, the Nao. Results indicate an improvement in mechanical energy consumption by 10% in simulations, and 1.8% on the Nao. Qualitatively, the proposed gait yielded motions that are more human-like.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10846-020-01179-z</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0001-7536-4261</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0921-0296
ispartof Journal of intelligent & robotic systems, 2020-10, Vol.100 (1), p.203-221
issn 0921-0296
1573-0409
language eng
recordid cdi_proquest_journals_2439758467
source SpringerLink Journals - AutoHoldings
subjects Artificial Intelligence
Biomimetics
Control
Electrical Engineering
Energy consumption
Engineering
Force and energy
Gait
Humanoid
Mechanical Engineering
Mechatronics
Robotics
Robots
Torque exertion, Ergonomic
title Biomimetic Energy-Based Humanoid Gait Design
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T08%3A18%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Biomimetic%20Energy-Based%20Humanoid%20Gait%20Design&rft.jtitle=Journal%20of%20intelligent%20&%20robotic%20systems&rft.au=Maalouf,%20Noel&rft.date=2020-10-01&rft.volume=100&rft.issue=1&rft.spage=203&rft.epage=221&rft.pages=203-221&rft.issn=0921-0296&rft.eissn=1573-0409&rft_id=info:doi/10.1007/s10846-020-01179-z&rft_dat=%3Cgale_proqu%3EA724156813%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2439758467&rft_id=info:pmid/&rft_galeid=A724156813&rfr_iscdi=true