Coverage Optimization with a Dynamic Network of Drone Relays

The integration of aerial base stations carried by drones in cellular networks offers promising opportunities to enhance the connectivity enjoyed by ground users. In this paper, we propose an optimization framework for the 3-D placement and repositioning of a fleet of drones with a realistic inter-d...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on mobile computing 2020-10, Vol.19 (10), p.2278-2298
Hauptverfasser: Arribas, Edgar, Mancuso, Vincenzo, Cholvi, Vicent
Format: Magazinearticle
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2298
container_issue 10
container_start_page 2278
container_title IEEE transactions on mobile computing
container_volume 19
creator Arribas, Edgar
Mancuso, Vincenzo
Cholvi, Vicent
description The integration of aerial base stations carried by drones in cellular networks offers promising opportunities to enhance the connectivity enjoyed by ground users. In this paper, we propose an optimization framework for the 3-D placement and repositioning of a fleet of drones with a realistic inter-drone interference model and drone connectivity constraints. We show how to maximize network coverage by means of an extremal-optimization algorithm. The design of our algorithm is based on a mixed-integer non-convex program formulation for a coverage problem that is NP-Complete, as we prove in the paper. We not only optimize drone positions in a 3-D space in polynomial time, but also assign flight routes solving an assignment problem and using a strong geometrical tool, namely Bézier curves , which are extremely useful for non-uniform and realistic topologies. Specifically, we propose to fly drones following Bézier curves to seek the chance of approaching to clusters of ground users. This enhances coverage over time while users and drones move. We assess the performance of our proposal for synthetic scenarios as well as realistic maps extracted from the topology of a capital city. We demonstrate that our framework is near-optimal and using Bézier curves increases coverage up to 47 percent while drones move.
doi_str_mv 10.1109/TMC.2019.2927335
format Magazinearticle
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2439704154</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8758183</ieee_id><sourcerecordid>2439704154</sourcerecordid><originalsourceid>FETCH-LOGICAL-c333t-e8e4ad0fb2b7628168e46bdf81e29c1123c665fb2488b39fa687e5a5dbe860da3</originalsourceid><addsrcrecordid>eNo9kM1LAzEQxYMoWKt3wUvA89Z8bLIJeJGtX1AtSD2H7O6sprabmmwt9a83pcXTzDDvzRt-CF1SMqKU6JvZSzlihOoR06zgXByhARVCZURKcrzrucwo4_wUncU4J4QqrYsBui39DwT7AXi66t3S_dre-Q5vXP-JLR5vO7t0NX6FfuPDF_YtHgffAX6Dhd3Gc3TS2kWEi0MdoveH-1n5lE2mj8_l3SSrOed9Bgpy25C2YlUhmaIyzbJqWkWB6Zqmr2opRVrnSlVct1aqAoQVTQVKksbyIbre310F_72G2Ju5X4cuRRqWc12QnIo8qcheVQcfY4DWrIJb2rA1lJgdI5MYmR0jc2CULFd7iwOAf7kqhKKK8z_fNGGd</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>magazinearticle</recordtype><pqid>2439704154</pqid></control><display><type>magazinearticle</type><title>Coverage Optimization with a Dynamic Network of Drone Relays</title><source>IEEE Electronic Library (IEL)</source><creator>Arribas, Edgar ; Mancuso, Vincenzo ; Cholvi, Vicent</creator><creatorcontrib>Arribas, Edgar ; Mancuso, Vincenzo ; Cholvi, Vicent</creatorcontrib><description>The integration of aerial base stations carried by drones in cellular networks offers promising opportunities to enhance the connectivity enjoyed by ground users. In this paper, we propose an optimization framework for the 3-D placement and repositioning of a fleet of drones with a realistic inter-drone interference model and drone connectivity constraints. We show how to maximize network coverage by means of an extremal-optimization algorithm. The design of our algorithm is based on a mixed-integer non-convex program formulation for a coverage problem that is NP-Complete, as we prove in the paper. We not only optimize drone positions in a 3-D space in polynomial time, but also assign flight routes solving an assignment problem and using a strong geometrical tool, namely Bézier curves , which are extremely useful for non-uniform and realistic topologies. Specifically, we propose to fly drones following Bézier curves to seek the chance of approaching to clusters of ground users. This enhances coverage over time while users and drones move. We assess the performance of our proposal for synthetic scenarios as well as realistic maps extracted from the topology of a capital city. We demonstrate that our framework is near-optimal and using Bézier curves increases coverage up to 47 percent while drones move.</description><identifier>ISSN: 1536-1233</identifier><identifier>EISSN: 1558-0660</identifier><identifier>DOI: 10.1109/TMC.2019.2927335</identifier><identifier>CODEN: ITMCCJ</identifier><language>eng</language><publisher>Los Alamitos: IEEE</publisher><subject>&lt;italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"&gt;Bézier curves ; Aerial networks ; Algorithms ; Base stations ; Cellular communication ; Constraint modelling ; Curves ; Design optimization ; Drone aircraft ; Drones ; Ground stations ; Interference ; Mixed integer ; mobile networks ; Network topologies ; Network topology ; Operations research ; Optimization ; Polynomials ; Radio equipment ; relay ; Relays ; Topology ; UAV</subject><ispartof>IEEE transactions on mobile computing, 2020-10, Vol.19 (10), p.2278-2298</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c333t-e8e4ad0fb2b7628168e46bdf81e29c1123c665fb2488b39fa687e5a5dbe860da3</citedby><cites>FETCH-LOGICAL-c333t-e8e4ad0fb2b7628168e46bdf81e29c1123c665fb2488b39fa687e5a5dbe860da3</cites><orcidid>0000-0003-3790-3409 ; 0000-0001-5395-7015 ; 0000-0002-4661-381X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8758183$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>777,781,793,27906,54739</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8758183$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Arribas, Edgar</creatorcontrib><creatorcontrib>Mancuso, Vincenzo</creatorcontrib><creatorcontrib>Cholvi, Vicent</creatorcontrib><title>Coverage Optimization with a Dynamic Network of Drone Relays</title><title>IEEE transactions on mobile computing</title><addtitle>TMC</addtitle><description>The integration of aerial base stations carried by drones in cellular networks offers promising opportunities to enhance the connectivity enjoyed by ground users. In this paper, we propose an optimization framework for the 3-D placement and repositioning of a fleet of drones with a realistic inter-drone interference model and drone connectivity constraints. We show how to maximize network coverage by means of an extremal-optimization algorithm. The design of our algorithm is based on a mixed-integer non-convex program formulation for a coverage problem that is NP-Complete, as we prove in the paper. We not only optimize drone positions in a 3-D space in polynomial time, but also assign flight routes solving an assignment problem and using a strong geometrical tool, namely Bézier curves , which are extremely useful for non-uniform and realistic topologies. Specifically, we propose to fly drones following Bézier curves to seek the chance of approaching to clusters of ground users. This enhances coverage over time while users and drones move. We assess the performance of our proposal for synthetic scenarios as well as realistic maps extracted from the topology of a capital city. We demonstrate that our framework is near-optimal and using Bézier curves increases coverage up to 47 percent while drones move.</description><subject>&lt;italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"&gt;Bézier curves</subject><subject>Aerial networks</subject><subject>Algorithms</subject><subject>Base stations</subject><subject>Cellular communication</subject><subject>Constraint modelling</subject><subject>Curves</subject><subject>Design optimization</subject><subject>Drone aircraft</subject><subject>Drones</subject><subject>Ground stations</subject><subject>Interference</subject><subject>Mixed integer</subject><subject>mobile networks</subject><subject>Network topologies</subject><subject>Network topology</subject><subject>Operations research</subject><subject>Optimization</subject><subject>Polynomials</subject><subject>Radio equipment</subject><subject>relay</subject><subject>Relays</subject><subject>Topology</subject><subject>UAV</subject><issn>1536-1233</issn><issn>1558-0660</issn><fulltext>true</fulltext><rsrctype>magazinearticle</rsrctype><creationdate>2020</creationdate><recordtype>magazinearticle</recordtype><sourceid>RIE</sourceid><recordid>eNo9kM1LAzEQxYMoWKt3wUvA89Z8bLIJeJGtX1AtSD2H7O6sprabmmwt9a83pcXTzDDvzRt-CF1SMqKU6JvZSzlihOoR06zgXByhARVCZURKcrzrucwo4_wUncU4J4QqrYsBui39DwT7AXi66t3S_dre-Q5vXP-JLR5vO7t0NX6FfuPDF_YtHgffAX6Dhd3Gc3TS2kWEi0MdoveH-1n5lE2mj8_l3SSrOed9Bgpy25C2YlUhmaIyzbJqWkWB6Zqmr2opRVrnSlVct1aqAoQVTQVKksbyIbre310F_72G2Ju5X4cuRRqWc12QnIo8qcheVQcfY4DWrIJb2rA1lJgdI5MYmR0jc2CULFd7iwOAf7kqhKKK8z_fNGGd</recordid><startdate>20201001</startdate><enddate>20201001</enddate><creator>Arribas, Edgar</creator><creator>Mancuso, Vincenzo</creator><creator>Cholvi, Vicent</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-3790-3409</orcidid><orcidid>https://orcid.org/0000-0001-5395-7015</orcidid><orcidid>https://orcid.org/0000-0002-4661-381X</orcidid></search><sort><creationdate>20201001</creationdate><title>Coverage Optimization with a Dynamic Network of Drone Relays</title><author>Arribas, Edgar ; Mancuso, Vincenzo ; Cholvi, Vicent</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c333t-e8e4ad0fb2b7628168e46bdf81e29c1123c665fb2488b39fa687e5a5dbe860da3</frbrgroupid><rsrctype>magazinearticle</rsrctype><prefilter>magazinearticle</prefilter><language>eng</language><creationdate>2020</creationdate><topic>&lt;italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"&gt;Bézier curves</topic><topic>Aerial networks</topic><topic>Algorithms</topic><topic>Base stations</topic><topic>Cellular communication</topic><topic>Constraint modelling</topic><topic>Curves</topic><topic>Design optimization</topic><topic>Drone aircraft</topic><topic>Drones</topic><topic>Ground stations</topic><topic>Interference</topic><topic>Mixed integer</topic><topic>mobile networks</topic><topic>Network topologies</topic><topic>Network topology</topic><topic>Operations research</topic><topic>Optimization</topic><topic>Polynomials</topic><topic>Radio equipment</topic><topic>relay</topic><topic>Relays</topic><topic>Topology</topic><topic>UAV</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Arribas, Edgar</creatorcontrib><creatorcontrib>Mancuso, Vincenzo</creatorcontrib><creatorcontrib>Cholvi, Vicent</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on mobile computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Arribas, Edgar</au><au>Mancuso, Vincenzo</au><au>Cholvi, Vicent</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Coverage Optimization with a Dynamic Network of Drone Relays</atitle><jtitle>IEEE transactions on mobile computing</jtitle><stitle>TMC</stitle><date>2020-10-01</date><risdate>2020</risdate><volume>19</volume><issue>10</issue><spage>2278</spage><epage>2298</epage><pages>2278-2298</pages><issn>1536-1233</issn><eissn>1558-0660</eissn><coden>ITMCCJ</coden><abstract>The integration of aerial base stations carried by drones in cellular networks offers promising opportunities to enhance the connectivity enjoyed by ground users. In this paper, we propose an optimization framework for the 3-D placement and repositioning of a fleet of drones with a realistic inter-drone interference model and drone connectivity constraints. We show how to maximize network coverage by means of an extremal-optimization algorithm. The design of our algorithm is based on a mixed-integer non-convex program formulation for a coverage problem that is NP-Complete, as we prove in the paper. We not only optimize drone positions in a 3-D space in polynomial time, but also assign flight routes solving an assignment problem and using a strong geometrical tool, namely Bézier curves , which are extremely useful for non-uniform and realistic topologies. Specifically, we propose to fly drones following Bézier curves to seek the chance of approaching to clusters of ground users. This enhances coverage over time while users and drones move. We assess the performance of our proposal for synthetic scenarios as well as realistic maps extracted from the topology of a capital city. We demonstrate that our framework is near-optimal and using Bézier curves increases coverage up to 47 percent while drones move.</abstract><cop>Los Alamitos</cop><pub>IEEE</pub><doi>10.1109/TMC.2019.2927335</doi><tpages>21</tpages><orcidid>https://orcid.org/0000-0003-3790-3409</orcidid><orcidid>https://orcid.org/0000-0001-5395-7015</orcidid><orcidid>https://orcid.org/0000-0002-4661-381X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1536-1233
ispartof IEEE transactions on mobile computing, 2020-10, Vol.19 (10), p.2278-2298
issn 1536-1233
1558-0660
language eng
recordid cdi_proquest_journals_2439704154
source IEEE Electronic Library (IEL)
subjects <italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">Bézier curves
Aerial networks
Algorithms
Base stations
Cellular communication
Constraint modelling
Curves
Design optimization
Drone aircraft
Drones
Ground stations
Interference
Mixed integer
mobile networks
Network topologies
Network topology
Operations research
Optimization
Polynomials
Radio equipment
relay
Relays
Topology
UAV
title Coverage Optimization with a Dynamic Network of Drone Relays
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T14%3A24%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Coverage%20Optimization%20with%20a%20Dynamic%20Network%20of%20Drone%20Relays&rft.jtitle=IEEE%20transactions%20on%20mobile%20computing&rft.au=Arribas,%20Edgar&rft.date=2020-10-01&rft.volume=19&rft.issue=10&rft.spage=2278&rft.epage=2298&rft.pages=2278-2298&rft.issn=1536-1233&rft.eissn=1558-0660&rft.coden=ITMCCJ&rft_id=info:doi/10.1109/TMC.2019.2927335&rft_dat=%3Cproquest_RIE%3E2439704154%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2439704154&rft_id=info:pmid/&rft_ieee_id=8758183&rfr_iscdi=true