Effect of superparamagnetic interaction on the magnetic heating efficiency of Co0.3Zn0.7Fe2O4 and Co0.5Zn0.5Fe2O4 nanoparticles

This work focused on the effect of dipolar interactions between particles on the magnetic heating efficiency of nanoferrites under an alternating magnetic field. The low-temperature hydrothermal method was adopted to obtain nanoparticles composed of Co0.3Zn0.7Fe2O4 and Co0.5Zn0.5Fe2O4. The single-ph...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physica. B, Condensed matter Condensed matter, 2020-08, Vol.591, p.412246, Article 412246
Hauptverfasser: Nam, P.H., Phuc, N.X., Tung, D.K., Nguyen, V.Q., Nam, N.H., Manh, D.H., Phong, P.T.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 412246
container_title Physica. B, Condensed matter
container_volume 591
creator Nam, P.H.
Phuc, N.X.
Tung, D.K.
Nguyen, V.Q.
Nam, N.H.
Manh, D.H.
Phong, P.T.
description This work focused on the effect of dipolar interactions between particles on the magnetic heating efficiency of nanoferrites under an alternating magnetic field. The low-temperature hydrothermal method was adopted to obtain nanoparticles composed of Co0.3Zn0.7Fe2O4 and Co0.5Zn0.5Fe2O4. The single-phase spinel structure of the samples was confirmed from X-ray diffraction data via Rietveld refinement technique. Transmission electron microscopy showed that the Co0.3Zn0.7Fe2O4 and Co0.5Zn0.5Fe2O4 nanoparticle ferrites had sizes of 10 and 12 nm, respectively. Blocking temperature showed a nonlinear and logarithmic decreasing tendency as a function of the applied magnetic field. The value of coercivity decreased with temperature and conformed to the Callen and Callen law. Dipolar interactions among nanoparticles caused magnetization to deviate from standard superparamagnetic behavior. This characteristic can be explained using the interacting superparamagnetic model. As a consequence, dipolar interactions reduced the specific loss power of Co0.3Zn0.7Fe2O4 and Co0.5Zn0.5Fe2O4 under 80 Oe at 178 kHz with increasing nanoparticle concentration. •Magnetic fluids based on Co0.3Zn0.7Fe2O4 and Co0.5Zn0.5Fe2O4 nanoparticles were synthesized.•Magnetic interaction between clusters strongly influence on heating capacity.•Higher heating efficacy is achieved for the Co0.5Zn0.5Fe2O4 based ferrofluids.
doi_str_mv 10.1016/j.physb.2020.412246
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2439666315</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0921452620302647</els_id><sourcerecordid>2439666315</sourcerecordid><originalsourceid>FETCH-LOGICAL-c246t-929296f086cd496dd252f6767cca052b7ed1509101af08b455ad8b35e3732c623</originalsourceid><addsrcrecordid>eNp9kE9LAzEQxYMoWKufwMuC513zZ5PtHjxIaVUQetGLl5BNJm1Km12TrdCTX91sVzyaBAZe3pthfgjdElwQTMT9tug2x9gUFFNclITSUpyhCZlVLKeE8XM0wTUlecmpuERXMW5xOqQiE_S9sBZ0n7U2i4cOQqeC2qu1h97pzPkegtK9a32WXr-B7O9vA6p3fp2BtU478Po49Ji3uGAfHhfVEuiqzJQ3J40PGh81r3ybxqQmO4jX6MKqXYSb3zpF78vF2_w5f109vcwfX3OddunzmqYrLJ4JbcpaGEM5taISldYKc9pUYAjHdYKhkqkpOVdm1jAOrGJUC8qm6G7s24X28wCxl9v2EHwaKWnJaiEEIzy52OjSoY0xgJVdcHsVjpJgOZCWW3kiLQfSciSdUg9jCtICXw6CjCciYFxIbKVp3b_5HwgxhgU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2439666315</pqid></control><display><type>article</type><title>Effect of superparamagnetic interaction on the magnetic heating efficiency of Co0.3Zn0.7Fe2O4 and Co0.5Zn0.5Fe2O4 nanoparticles</title><source>Elsevier ScienceDirect Journals</source><creator>Nam, P.H. ; Phuc, N.X. ; Tung, D.K. ; Nguyen, V.Q. ; Nam, N.H. ; Manh, D.H. ; Phong, P.T.</creator><creatorcontrib>Nam, P.H. ; Phuc, N.X. ; Tung, D.K. ; Nguyen, V.Q. ; Nam, N.H. ; Manh, D.H. ; Phong, P.T.</creatorcontrib><description>This work focused on the effect of dipolar interactions between particles on the magnetic heating efficiency of nanoferrites under an alternating magnetic field. The low-temperature hydrothermal method was adopted to obtain nanoparticles composed of Co0.3Zn0.7Fe2O4 and Co0.5Zn0.5Fe2O4. The single-phase spinel structure of the samples was confirmed from X-ray diffraction data via Rietveld refinement technique. Transmission electron microscopy showed that the Co0.3Zn0.7Fe2O4 and Co0.5Zn0.5Fe2O4 nanoparticle ferrites had sizes of 10 and 12 nm, respectively. Blocking temperature showed a nonlinear and logarithmic decreasing tendency as a function of the applied magnetic field. The value of coercivity decreased with temperature and conformed to the Callen and Callen law. Dipolar interactions among nanoparticles caused magnetization to deviate from standard superparamagnetic behavior. This characteristic can be explained using the interacting superparamagnetic model. As a consequence, dipolar interactions reduced the specific loss power of Co0.3Zn0.7Fe2O4 and Co0.5Zn0.5Fe2O4 under 80 Oe at 178 kHz with increasing nanoparticle concentration. •Magnetic fluids based on Co0.3Zn0.7Fe2O4 and Co0.5Zn0.5Fe2O4 nanoparticles were synthesized.•Magnetic interaction between clusters strongly influence on heating capacity.•Higher heating efficacy is achieved for the Co0.5Zn0.5Fe2O4 based ferrofluids.</description><identifier>ISSN: 0921-4526</identifier><identifier>EISSN: 1873-2135</identifier><identifier>DOI: 10.1016/j.physb.2020.412246</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Coercivity ; Ferrite nanoparticles ; Ferrites ; Heating ; Hyperthermia ; Interacting superparamagnetic model ; Low temperature ; Magnetic fields ; Magnetic heating ; Magnetism ; Nanoparticles ; Transmission electron microscopy</subject><ispartof>Physica. B, Condensed matter, 2020-08, Vol.591, p.412246, Article 412246</ispartof><rights>2020 Elsevier B.V.</rights><rights>Copyright Elsevier BV Aug 15, 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c246t-929296f086cd496dd252f6767cca052b7ed1509101af08b455ad8b35e3732c623</citedby><cites>FETCH-LOGICAL-c246t-929296f086cd496dd252f6767cca052b7ed1509101af08b455ad8b35e3732c623</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0921452620302647$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Nam, P.H.</creatorcontrib><creatorcontrib>Phuc, N.X.</creatorcontrib><creatorcontrib>Tung, D.K.</creatorcontrib><creatorcontrib>Nguyen, V.Q.</creatorcontrib><creatorcontrib>Nam, N.H.</creatorcontrib><creatorcontrib>Manh, D.H.</creatorcontrib><creatorcontrib>Phong, P.T.</creatorcontrib><title>Effect of superparamagnetic interaction on the magnetic heating efficiency of Co0.3Zn0.7Fe2O4 and Co0.5Zn0.5Fe2O4 nanoparticles</title><title>Physica. B, Condensed matter</title><description>This work focused on the effect of dipolar interactions between particles on the magnetic heating efficiency of nanoferrites under an alternating magnetic field. The low-temperature hydrothermal method was adopted to obtain nanoparticles composed of Co0.3Zn0.7Fe2O4 and Co0.5Zn0.5Fe2O4. The single-phase spinel structure of the samples was confirmed from X-ray diffraction data via Rietveld refinement technique. Transmission electron microscopy showed that the Co0.3Zn0.7Fe2O4 and Co0.5Zn0.5Fe2O4 nanoparticle ferrites had sizes of 10 and 12 nm, respectively. Blocking temperature showed a nonlinear and logarithmic decreasing tendency as a function of the applied magnetic field. The value of coercivity decreased with temperature and conformed to the Callen and Callen law. Dipolar interactions among nanoparticles caused magnetization to deviate from standard superparamagnetic behavior. This characteristic can be explained using the interacting superparamagnetic model. As a consequence, dipolar interactions reduced the specific loss power of Co0.3Zn0.7Fe2O4 and Co0.5Zn0.5Fe2O4 under 80 Oe at 178 kHz with increasing nanoparticle concentration. •Magnetic fluids based on Co0.3Zn0.7Fe2O4 and Co0.5Zn0.5Fe2O4 nanoparticles were synthesized.•Magnetic interaction between clusters strongly influence on heating capacity.•Higher heating efficacy is achieved for the Co0.5Zn0.5Fe2O4 based ferrofluids.</description><subject>Coercivity</subject><subject>Ferrite nanoparticles</subject><subject>Ferrites</subject><subject>Heating</subject><subject>Hyperthermia</subject><subject>Interacting superparamagnetic model</subject><subject>Low temperature</subject><subject>Magnetic fields</subject><subject>Magnetic heating</subject><subject>Magnetism</subject><subject>Nanoparticles</subject><subject>Transmission electron microscopy</subject><issn>0921-4526</issn><issn>1873-2135</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LAzEQxYMoWKufwMuC513zZ5PtHjxIaVUQetGLl5BNJm1Km12TrdCTX91sVzyaBAZe3pthfgjdElwQTMT9tug2x9gUFFNclITSUpyhCZlVLKeE8XM0wTUlecmpuERXMW5xOqQiE_S9sBZ0n7U2i4cOQqeC2qu1h97pzPkegtK9a32WXr-B7O9vA6p3fp2BtU478Po49Ji3uGAfHhfVEuiqzJQ3J40PGh81r3ybxqQmO4jX6MKqXYSb3zpF78vF2_w5f109vcwfX3OddunzmqYrLJ4JbcpaGEM5taISldYKc9pUYAjHdYKhkqkpOVdm1jAOrGJUC8qm6G7s24X28wCxl9v2EHwaKWnJaiEEIzy52OjSoY0xgJVdcHsVjpJgOZCWW3kiLQfSciSdUg9jCtICXw6CjCciYFxIbKVp3b_5HwgxhgU</recordid><startdate>20200815</startdate><enddate>20200815</enddate><creator>Nam, P.H.</creator><creator>Phuc, N.X.</creator><creator>Tung, D.K.</creator><creator>Nguyen, V.Q.</creator><creator>Nam, N.H.</creator><creator>Manh, D.H.</creator><creator>Phong, P.T.</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>20200815</creationdate><title>Effect of superparamagnetic interaction on the magnetic heating efficiency of Co0.3Zn0.7Fe2O4 and Co0.5Zn0.5Fe2O4 nanoparticles</title><author>Nam, P.H. ; Phuc, N.X. ; Tung, D.K. ; Nguyen, V.Q. ; Nam, N.H. ; Manh, D.H. ; Phong, P.T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c246t-929296f086cd496dd252f6767cca052b7ed1509101af08b455ad8b35e3732c623</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Coercivity</topic><topic>Ferrite nanoparticles</topic><topic>Ferrites</topic><topic>Heating</topic><topic>Hyperthermia</topic><topic>Interacting superparamagnetic model</topic><topic>Low temperature</topic><topic>Magnetic fields</topic><topic>Magnetic heating</topic><topic>Magnetism</topic><topic>Nanoparticles</topic><topic>Transmission electron microscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nam, P.H.</creatorcontrib><creatorcontrib>Phuc, N.X.</creatorcontrib><creatorcontrib>Tung, D.K.</creatorcontrib><creatorcontrib>Nguyen, V.Q.</creatorcontrib><creatorcontrib>Nam, N.H.</creatorcontrib><creatorcontrib>Manh, D.H.</creatorcontrib><creatorcontrib>Phong, P.T.</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physica. B, Condensed matter</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nam, P.H.</au><au>Phuc, N.X.</au><au>Tung, D.K.</au><au>Nguyen, V.Q.</au><au>Nam, N.H.</au><au>Manh, D.H.</au><au>Phong, P.T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effect of superparamagnetic interaction on the magnetic heating efficiency of Co0.3Zn0.7Fe2O4 and Co0.5Zn0.5Fe2O4 nanoparticles</atitle><jtitle>Physica. B, Condensed matter</jtitle><date>2020-08-15</date><risdate>2020</risdate><volume>591</volume><spage>412246</spage><pages>412246-</pages><artnum>412246</artnum><issn>0921-4526</issn><eissn>1873-2135</eissn><abstract>This work focused on the effect of dipolar interactions between particles on the magnetic heating efficiency of nanoferrites under an alternating magnetic field. The low-temperature hydrothermal method was adopted to obtain nanoparticles composed of Co0.3Zn0.7Fe2O4 and Co0.5Zn0.5Fe2O4. The single-phase spinel structure of the samples was confirmed from X-ray diffraction data via Rietveld refinement technique. Transmission electron microscopy showed that the Co0.3Zn0.7Fe2O4 and Co0.5Zn0.5Fe2O4 nanoparticle ferrites had sizes of 10 and 12 nm, respectively. Blocking temperature showed a nonlinear and logarithmic decreasing tendency as a function of the applied magnetic field. The value of coercivity decreased with temperature and conformed to the Callen and Callen law. Dipolar interactions among nanoparticles caused magnetization to deviate from standard superparamagnetic behavior. This characteristic can be explained using the interacting superparamagnetic model. As a consequence, dipolar interactions reduced the specific loss power of Co0.3Zn0.7Fe2O4 and Co0.5Zn0.5Fe2O4 under 80 Oe at 178 kHz with increasing nanoparticle concentration. •Magnetic fluids based on Co0.3Zn0.7Fe2O4 and Co0.5Zn0.5Fe2O4 nanoparticles were synthesized.•Magnetic interaction between clusters strongly influence on heating capacity.•Higher heating efficacy is achieved for the Co0.5Zn0.5Fe2O4 based ferrofluids.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.physb.2020.412246</doi></addata></record>
fulltext fulltext
identifier ISSN: 0921-4526
ispartof Physica. B, Condensed matter, 2020-08, Vol.591, p.412246, Article 412246
issn 0921-4526
1873-2135
language eng
recordid cdi_proquest_journals_2439666315
source Elsevier ScienceDirect Journals
subjects Coercivity
Ferrite nanoparticles
Ferrites
Heating
Hyperthermia
Interacting superparamagnetic model
Low temperature
Magnetic fields
Magnetic heating
Magnetism
Nanoparticles
Transmission electron microscopy
title Effect of superparamagnetic interaction on the magnetic heating efficiency of Co0.3Zn0.7Fe2O4 and Co0.5Zn0.5Fe2O4 nanoparticles
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T12%3A51%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effect%20of%20superparamagnetic%20interaction%20on%20the%20magnetic%20heating%20efficiency%20of%20Co0.3Zn0.7Fe2O4%20and%20Co0.5Zn0.5Fe2O4%20nanoparticles&rft.jtitle=Physica.%20B,%20Condensed%20matter&rft.au=Nam,%20P.H.&rft.date=2020-08-15&rft.volume=591&rft.spage=412246&rft.pages=412246-&rft.artnum=412246&rft.issn=0921-4526&rft.eissn=1873-2135&rft_id=info:doi/10.1016/j.physb.2020.412246&rft_dat=%3Cproquest_cross%3E2439666315%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2439666315&rft_id=info:pmid/&rft_els_id=S0921452620302647&rfr_iscdi=true