Toward the New Generation of Surgical Meshes with 4D Response: Soft, Dynamic, and Adaptable
Herein, a facile approach toward transforming a 2D polypropylene flexible mesh material into a 4D dynamic system is presented. The versatile platform, composed by a substrate of knitted fibers of isotactic polypropylene (iPP) mesh and a coating of thermosensitive poly(N‐isopropylacrylamide‐co‐N,N’‐m...
Gespeichert in:
Veröffentlicht in: | Advanced functional materials 2020-09, Vol.30 (36), p.n/a |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 36 |
container_start_page | |
container_title | Advanced functional materials |
container_volume | 30 |
creator | Lanzalaco, Sonia Turon, Pau Weis, Christine Mata, Christian Planas, Eulàlia Alemán, Carlos Armelin, Elaine |
description | Herein, a facile approach toward transforming a 2D polypropylene flexible mesh material into a 4D dynamic system is presented. The versatile platform, composed by a substrate of knitted fibers of isotactic polypropylene (iPP) mesh and a coating of thermosensitive poly(N‐isopropylacrylamide‐co‐N,N’‐methylene bis(acrylamide) (PNIPAAm‐co‐MBA) hydrogel, covalently bonded to the mesh surface, after cold‐plasma surface treatment and radical polymerization, is intended to undergo variations in its geometry via its reversible folding/unfolding behavior. The study is the first to trace the 3D movement of a flat surgical mesh, intended to repair hernia defects, under temperature and humidity control. An infrared thermographic camera and an optical microscope are used to evaluate the macroscopic and microscopic structure stimulus response. The presence of the PP substrate and the distribution of the gel surrounding the PP threads, affect both the PNIPAAM gel expansion/contraction as well as the time of folding/unfolding response. Furthermore, PP‐g‐PNIPAAm meshes show an increase in the bursting strength of ≈16% with respect to the uncoated mesh, offering a strongest and adaptable system for its future implantation in human body. The findings reported offer unprecedented application possibilities in the biomedical field.
The 4D concept for creating dynamic devices, that can change their shape and/or function under controlled stimulus, is an emerging technology. Here, a smart responsive mesh material, able to self‐evolve under temperature and humidity variations, is developed. The specific stimulus response is assessed using a thermal infrared imaging camera and optical microscope for the macro‐ and microstructure evaluations, respectively. |
doi_str_mv | 10.1002/adfm.202004145 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2439595555</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2439595555</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3965-a9a75a5827dd5b81270efec164ba8ce819947099429c757dfc62ef61d8e672f63</originalsourceid><addsrcrecordid>eNqFkMFLwzAUh4soOKdXzwGv20zSNmm8jc1NYVNwEwQPIUteXEfX1KSj7L-3YzKPvsN77_D93oMvim4JHhCM6b0ydjugmGKckCQ9izqEEdaPMc3OTzv5uIyuQthgTDiPk070uXSN8gbVa0Av0KAplOBVnbsSOYsWO_-Va1WgOYQ1BNTk9RolY_QGoXJlgAe0cLbuofG-VNtc95AqDRoaVdVqVcB1dGFVEeDmd3aj98njcvTUn71On0fDWV_HgqV9JRRPVZpRbky6ygjlGCxowpKVyjRkRIiE47ZRoXnKjdWMgmXEZMA4tSzuRnfHu5V33zsItdy4nS_bl5ImsUhF2lZLDY6U9i4ED1ZWPt8qv5cEy4NAeRAoTwLbgDgGmryA_T-0HI4n87_sD0rQcvg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2439595555</pqid></control><display><type>article</type><title>Toward the New Generation of Surgical Meshes with 4D Response: Soft, Dynamic, and Adaptable</title><source>Wiley Online Library - AutoHoldings Journals</source><creator>Lanzalaco, Sonia ; Turon, Pau ; Weis, Christine ; Mata, Christian ; Planas, Eulàlia ; Alemán, Carlos ; Armelin, Elaine</creator><creatorcontrib>Lanzalaco, Sonia ; Turon, Pau ; Weis, Christine ; Mata, Christian ; Planas, Eulàlia ; Alemán, Carlos ; Armelin, Elaine</creatorcontrib><description>Herein, a facile approach toward transforming a 2D polypropylene flexible mesh material into a 4D dynamic system is presented. The versatile platform, composed by a substrate of knitted fibers of isotactic polypropylene (iPP) mesh and a coating of thermosensitive poly(N‐isopropylacrylamide‐co‐N,N’‐methylene bis(acrylamide) (PNIPAAm‐co‐MBA) hydrogel, covalently bonded to the mesh surface, after cold‐plasma surface treatment and radical polymerization, is intended to undergo variations in its geometry via its reversible folding/unfolding behavior. The study is the first to trace the 3D movement of a flat surgical mesh, intended to repair hernia defects, under temperature and humidity control. An infrared thermographic camera and an optical microscope are used to evaluate the macroscopic and microscopic structure stimulus response. The presence of the PP substrate and the distribution of the gel surrounding the PP threads, affect both the PNIPAAM gel expansion/contraction as well as the time of folding/unfolding response. Furthermore, PP‐g‐PNIPAAm meshes show an increase in the bursting strength of ≈16% with respect to the uncoated mesh, offering a strongest and adaptable system for its future implantation in human body. The findings reported offer unprecedented application possibilities in the biomedical field.
The 4D concept for creating dynamic devices, that can change their shape and/or function under controlled stimulus, is an emerging technology. Here, a smart responsive mesh material, able to self‐evolve under temperature and humidity variations, is developed. The specific stimulus response is assessed using a thermal infrared imaging camera and optical microscope for the macro‐ and microstructure evaluations, respectively.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.202004145</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>Acrylamide ; Biomedical materials ; Bursting strength ; Cold treatment ; dynamic devices ; Folding ; Hydrogels ; Implantation ; Infrared cameras ; Isopropylacrylamide ; Materials science ; Moisture control ; Optical microscopes ; Polypropylene ; polypropylene meshes ; Substrates ; Surface treatment ; surgical implants ; Thermography ; thermosensitive hydrogels ; Three dimensional motion</subject><ispartof>Advanced functional materials, 2020-09, Vol.30 (36), p.n/a</ispartof><rights>2020 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><rights>2020 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3965-a9a75a5827dd5b81270efec164ba8ce819947099429c757dfc62ef61d8e672f63</citedby><cites>FETCH-LOGICAL-c3965-a9a75a5827dd5b81270efec164ba8ce819947099429c757dfc62ef61d8e672f63</cites><orcidid>0000-0003-4462-6075 ; 0000-0002-0658-7696 ; 0000-0001-6354-9701 ; 0000-0002-7053-3959 ; 0000-0002-8604-5095 ; 0000-0003-4768-5062</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadfm.202004145$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadfm.202004145$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Lanzalaco, Sonia</creatorcontrib><creatorcontrib>Turon, Pau</creatorcontrib><creatorcontrib>Weis, Christine</creatorcontrib><creatorcontrib>Mata, Christian</creatorcontrib><creatorcontrib>Planas, Eulàlia</creatorcontrib><creatorcontrib>Alemán, Carlos</creatorcontrib><creatorcontrib>Armelin, Elaine</creatorcontrib><title>Toward the New Generation of Surgical Meshes with 4D Response: Soft, Dynamic, and Adaptable</title><title>Advanced functional materials</title><description>Herein, a facile approach toward transforming a 2D polypropylene flexible mesh material into a 4D dynamic system is presented. The versatile platform, composed by a substrate of knitted fibers of isotactic polypropylene (iPP) mesh and a coating of thermosensitive poly(N‐isopropylacrylamide‐co‐N,N’‐methylene bis(acrylamide) (PNIPAAm‐co‐MBA) hydrogel, covalently bonded to the mesh surface, after cold‐plasma surface treatment and radical polymerization, is intended to undergo variations in its geometry via its reversible folding/unfolding behavior. The study is the first to trace the 3D movement of a flat surgical mesh, intended to repair hernia defects, under temperature and humidity control. An infrared thermographic camera and an optical microscope are used to evaluate the macroscopic and microscopic structure stimulus response. The presence of the PP substrate and the distribution of the gel surrounding the PP threads, affect both the PNIPAAM gel expansion/contraction as well as the time of folding/unfolding response. Furthermore, PP‐g‐PNIPAAm meshes show an increase in the bursting strength of ≈16% with respect to the uncoated mesh, offering a strongest and adaptable system for its future implantation in human body. The findings reported offer unprecedented application possibilities in the biomedical field.
The 4D concept for creating dynamic devices, that can change their shape and/or function under controlled stimulus, is an emerging technology. Here, a smart responsive mesh material, able to self‐evolve under temperature and humidity variations, is developed. The specific stimulus response is assessed using a thermal infrared imaging camera and optical microscope for the macro‐ and microstructure evaluations, respectively.</description><subject>Acrylamide</subject><subject>Biomedical materials</subject><subject>Bursting strength</subject><subject>Cold treatment</subject><subject>dynamic devices</subject><subject>Folding</subject><subject>Hydrogels</subject><subject>Implantation</subject><subject>Infrared cameras</subject><subject>Isopropylacrylamide</subject><subject>Materials science</subject><subject>Moisture control</subject><subject>Optical microscopes</subject><subject>Polypropylene</subject><subject>polypropylene meshes</subject><subject>Substrates</subject><subject>Surface treatment</subject><subject>surgical implants</subject><subject>Thermography</subject><subject>thermosensitive hydrogels</subject><subject>Three dimensional motion</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqFkMFLwzAUh4soOKdXzwGv20zSNmm8jc1NYVNwEwQPIUteXEfX1KSj7L-3YzKPvsN77_D93oMvim4JHhCM6b0ydjugmGKckCQ9izqEEdaPMc3OTzv5uIyuQthgTDiPk070uXSN8gbVa0Av0KAplOBVnbsSOYsWO_-Va1WgOYQ1BNTk9RolY_QGoXJlgAe0cLbuofG-VNtc95AqDRoaVdVqVcB1dGFVEeDmd3aj98njcvTUn71On0fDWV_HgqV9JRRPVZpRbky6ygjlGCxowpKVyjRkRIiE47ZRoXnKjdWMgmXEZMA4tSzuRnfHu5V33zsItdy4nS_bl5ImsUhF2lZLDY6U9i4ED1ZWPt8qv5cEy4NAeRAoTwLbgDgGmryA_T-0HI4n87_sD0rQcvg</recordid><startdate>20200901</startdate><enddate>20200901</enddate><creator>Lanzalaco, Sonia</creator><creator>Turon, Pau</creator><creator>Weis, Christine</creator><creator>Mata, Christian</creator><creator>Planas, Eulàlia</creator><creator>Alemán, Carlos</creator><creator>Armelin, Elaine</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-4462-6075</orcidid><orcidid>https://orcid.org/0000-0002-0658-7696</orcidid><orcidid>https://orcid.org/0000-0001-6354-9701</orcidid><orcidid>https://orcid.org/0000-0002-7053-3959</orcidid><orcidid>https://orcid.org/0000-0002-8604-5095</orcidid><orcidid>https://orcid.org/0000-0003-4768-5062</orcidid></search><sort><creationdate>20200901</creationdate><title>Toward the New Generation of Surgical Meshes with 4D Response: Soft, Dynamic, and Adaptable</title><author>Lanzalaco, Sonia ; Turon, Pau ; Weis, Christine ; Mata, Christian ; Planas, Eulàlia ; Alemán, Carlos ; Armelin, Elaine</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3965-a9a75a5827dd5b81270efec164ba8ce819947099429c757dfc62ef61d8e672f63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Acrylamide</topic><topic>Biomedical materials</topic><topic>Bursting strength</topic><topic>Cold treatment</topic><topic>dynamic devices</topic><topic>Folding</topic><topic>Hydrogels</topic><topic>Implantation</topic><topic>Infrared cameras</topic><topic>Isopropylacrylamide</topic><topic>Materials science</topic><topic>Moisture control</topic><topic>Optical microscopes</topic><topic>Polypropylene</topic><topic>polypropylene meshes</topic><topic>Substrates</topic><topic>Surface treatment</topic><topic>surgical implants</topic><topic>Thermography</topic><topic>thermosensitive hydrogels</topic><topic>Three dimensional motion</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lanzalaco, Sonia</creatorcontrib><creatorcontrib>Turon, Pau</creatorcontrib><creatorcontrib>Weis, Christine</creatorcontrib><creatorcontrib>Mata, Christian</creatorcontrib><creatorcontrib>Planas, Eulàlia</creatorcontrib><creatorcontrib>Alemán, Carlos</creatorcontrib><creatorcontrib>Armelin, Elaine</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lanzalaco, Sonia</au><au>Turon, Pau</au><au>Weis, Christine</au><au>Mata, Christian</au><au>Planas, Eulàlia</au><au>Alemán, Carlos</au><au>Armelin, Elaine</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Toward the New Generation of Surgical Meshes with 4D Response: Soft, Dynamic, and Adaptable</atitle><jtitle>Advanced functional materials</jtitle><date>2020-09-01</date><risdate>2020</risdate><volume>30</volume><issue>36</issue><epage>n/a</epage><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>Herein, a facile approach toward transforming a 2D polypropylene flexible mesh material into a 4D dynamic system is presented. The versatile platform, composed by a substrate of knitted fibers of isotactic polypropylene (iPP) mesh and a coating of thermosensitive poly(N‐isopropylacrylamide‐co‐N,N’‐methylene bis(acrylamide) (PNIPAAm‐co‐MBA) hydrogel, covalently bonded to the mesh surface, after cold‐plasma surface treatment and radical polymerization, is intended to undergo variations in its geometry via its reversible folding/unfolding behavior. The study is the first to trace the 3D movement of a flat surgical mesh, intended to repair hernia defects, under temperature and humidity control. An infrared thermographic camera and an optical microscope are used to evaluate the macroscopic and microscopic structure stimulus response. The presence of the PP substrate and the distribution of the gel surrounding the PP threads, affect both the PNIPAAM gel expansion/contraction as well as the time of folding/unfolding response. Furthermore, PP‐g‐PNIPAAm meshes show an increase in the bursting strength of ≈16% with respect to the uncoated mesh, offering a strongest and adaptable system for its future implantation in human body. The findings reported offer unprecedented application possibilities in the biomedical field.
The 4D concept for creating dynamic devices, that can change their shape and/or function under controlled stimulus, is an emerging technology. Here, a smart responsive mesh material, able to self‐evolve under temperature and humidity variations, is developed. The specific stimulus response is assessed using a thermal infrared imaging camera and optical microscope for the macro‐ and microstructure evaluations, respectively.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adfm.202004145</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-4462-6075</orcidid><orcidid>https://orcid.org/0000-0002-0658-7696</orcidid><orcidid>https://orcid.org/0000-0001-6354-9701</orcidid><orcidid>https://orcid.org/0000-0002-7053-3959</orcidid><orcidid>https://orcid.org/0000-0002-8604-5095</orcidid><orcidid>https://orcid.org/0000-0003-4768-5062</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1616-301X |
ispartof | Advanced functional materials, 2020-09, Vol.30 (36), p.n/a |
issn | 1616-301X 1616-3028 |
language | eng |
recordid | cdi_proquest_journals_2439595555 |
source | Wiley Online Library - AutoHoldings Journals |
subjects | Acrylamide Biomedical materials Bursting strength Cold treatment dynamic devices Folding Hydrogels Implantation Infrared cameras Isopropylacrylamide Materials science Moisture control Optical microscopes Polypropylene polypropylene meshes Substrates Surface treatment surgical implants Thermography thermosensitive hydrogels Three dimensional motion |
title | Toward the New Generation of Surgical Meshes with 4D Response: Soft, Dynamic, and Adaptable |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T04%3A45%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Toward%20the%20New%20Generation%20of%20Surgical%20Meshes%20with%204D%20Response:%20Soft,%20Dynamic,%20and%20Adaptable&rft.jtitle=Advanced%20functional%20materials&rft.au=Lanzalaco,%20Sonia&rft.date=2020-09-01&rft.volume=30&rft.issue=36&rft.epage=n/a&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.202004145&rft_dat=%3Cproquest_cross%3E2439595555%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2439595555&rft_id=info:pmid/&rfr_iscdi=true |