Toward the New Generation of Surgical Meshes with 4D Response: Soft, Dynamic, and Adaptable

Herein, a facile approach toward transforming a 2D polypropylene flexible mesh material into a 4D dynamic system is presented. The versatile platform, composed by a substrate of knitted fibers of isotactic polypropylene (iPP) mesh and a coating of thermosensitive poly(N‐isopropylacrylamide‐co‐N,N’‐m...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced functional materials 2020-09, Vol.30 (36), p.n/a
Hauptverfasser: Lanzalaco, Sonia, Turon, Pau, Weis, Christine, Mata, Christian, Planas, Eulàlia, Alemán, Carlos, Armelin, Elaine
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 36
container_start_page
container_title Advanced functional materials
container_volume 30
creator Lanzalaco, Sonia
Turon, Pau
Weis, Christine
Mata, Christian
Planas, Eulàlia
Alemán, Carlos
Armelin, Elaine
description Herein, a facile approach toward transforming a 2D polypropylene flexible mesh material into a 4D dynamic system is presented. The versatile platform, composed by a substrate of knitted fibers of isotactic polypropylene (iPP) mesh and a coating of thermosensitive poly(N‐isopropylacrylamide‐co‐N,N’‐methylene bis(acrylamide) (PNIPAAm‐co‐MBA) hydrogel, covalently bonded to the mesh surface, after cold‐plasma surface treatment and radical polymerization, is intended to undergo variations in its geometry via its reversible folding/unfolding behavior. The study is the first to trace the 3D movement of a flat surgical mesh, intended to repair hernia defects, under temperature and humidity control. An infrared thermographic camera and an optical microscope are used to evaluate the macroscopic and microscopic structure stimulus response. The presence of the PP substrate and the distribution of the gel surrounding the PP threads, affect both the PNIPAAM gel expansion/contraction as well as the time of folding/unfolding response. Furthermore, PP‐g‐PNIPAAm meshes show an increase in the bursting strength of ≈16% with respect to the uncoated mesh, offering a strongest and adaptable system for its future implantation in human body. The findings reported offer unprecedented application possibilities in the biomedical field. The 4D concept for creating dynamic devices, that can change their shape and/or function under controlled stimulus, is an emerging technology. Here, a smart responsive mesh material, able to self‐evolve under temperature and humidity variations, is developed. The specific stimulus response is assessed using a thermal infrared imaging camera and optical microscope for the macro‐ and microstructure evaluations, respectively.
doi_str_mv 10.1002/adfm.202004145
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2439595555</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2439595555</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3965-a9a75a5827dd5b81270efec164ba8ce819947099429c757dfc62ef61d8e672f63</originalsourceid><addsrcrecordid>eNqFkMFLwzAUh4soOKdXzwGv20zSNmm8jc1NYVNwEwQPIUteXEfX1KSj7L-3YzKPvsN77_D93oMvim4JHhCM6b0ydjugmGKckCQ9izqEEdaPMc3OTzv5uIyuQthgTDiPk070uXSN8gbVa0Av0KAplOBVnbsSOYsWO_-Va1WgOYQ1BNTk9RolY_QGoXJlgAe0cLbuofG-VNtc95AqDRoaVdVqVcB1dGFVEeDmd3aj98njcvTUn71On0fDWV_HgqV9JRRPVZpRbky6ygjlGCxowpKVyjRkRIiE47ZRoXnKjdWMgmXEZMA4tSzuRnfHu5V33zsItdy4nS_bl5ImsUhF2lZLDY6U9i4ED1ZWPt8qv5cEy4NAeRAoTwLbgDgGmryA_T-0HI4n87_sD0rQcvg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2439595555</pqid></control><display><type>article</type><title>Toward the New Generation of Surgical Meshes with 4D Response: Soft, Dynamic, and Adaptable</title><source>Wiley Online Library - AutoHoldings Journals</source><creator>Lanzalaco, Sonia ; Turon, Pau ; Weis, Christine ; Mata, Christian ; Planas, Eulàlia ; Alemán, Carlos ; Armelin, Elaine</creator><creatorcontrib>Lanzalaco, Sonia ; Turon, Pau ; Weis, Christine ; Mata, Christian ; Planas, Eulàlia ; Alemán, Carlos ; Armelin, Elaine</creatorcontrib><description>Herein, a facile approach toward transforming a 2D polypropylene flexible mesh material into a 4D dynamic system is presented. The versatile platform, composed by a substrate of knitted fibers of isotactic polypropylene (iPP) mesh and a coating of thermosensitive poly(N‐isopropylacrylamide‐co‐N,N’‐methylene bis(acrylamide) (PNIPAAm‐co‐MBA) hydrogel, covalently bonded to the mesh surface, after cold‐plasma surface treatment and radical polymerization, is intended to undergo variations in its geometry via its reversible folding/unfolding behavior. The study is the first to trace the 3D movement of a flat surgical mesh, intended to repair hernia defects, under temperature and humidity control. An infrared thermographic camera and an optical microscope are used to evaluate the macroscopic and microscopic structure stimulus response. The presence of the PP substrate and the distribution of the gel surrounding the PP threads, affect both the PNIPAAM gel expansion/contraction as well as the time of folding/unfolding response. Furthermore, PP‐g‐PNIPAAm meshes show an increase in the bursting strength of ≈16% with respect to the uncoated mesh, offering a strongest and adaptable system for its future implantation in human body. The findings reported offer unprecedented application possibilities in the biomedical field. The 4D concept for creating dynamic devices, that can change their shape and/or function under controlled stimulus, is an emerging technology. Here, a smart responsive mesh material, able to self‐evolve under temperature and humidity variations, is developed. The specific stimulus response is assessed using a thermal infrared imaging camera and optical microscope for the macro‐ and microstructure evaluations, respectively.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.202004145</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>Acrylamide ; Biomedical materials ; Bursting strength ; Cold treatment ; dynamic devices ; Folding ; Hydrogels ; Implantation ; Infrared cameras ; Isopropylacrylamide ; Materials science ; Moisture control ; Optical microscopes ; Polypropylene ; polypropylene meshes ; Substrates ; Surface treatment ; surgical implants ; Thermography ; thermosensitive hydrogels ; Three dimensional motion</subject><ispartof>Advanced functional materials, 2020-09, Vol.30 (36), p.n/a</ispartof><rights>2020 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>2020 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3965-a9a75a5827dd5b81270efec164ba8ce819947099429c757dfc62ef61d8e672f63</citedby><cites>FETCH-LOGICAL-c3965-a9a75a5827dd5b81270efec164ba8ce819947099429c757dfc62ef61d8e672f63</cites><orcidid>0000-0003-4462-6075 ; 0000-0002-0658-7696 ; 0000-0001-6354-9701 ; 0000-0002-7053-3959 ; 0000-0002-8604-5095 ; 0000-0003-4768-5062</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadfm.202004145$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadfm.202004145$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Lanzalaco, Sonia</creatorcontrib><creatorcontrib>Turon, Pau</creatorcontrib><creatorcontrib>Weis, Christine</creatorcontrib><creatorcontrib>Mata, Christian</creatorcontrib><creatorcontrib>Planas, Eulàlia</creatorcontrib><creatorcontrib>Alemán, Carlos</creatorcontrib><creatorcontrib>Armelin, Elaine</creatorcontrib><title>Toward the New Generation of Surgical Meshes with 4D Response: Soft, Dynamic, and Adaptable</title><title>Advanced functional materials</title><description>Herein, a facile approach toward transforming a 2D polypropylene flexible mesh material into a 4D dynamic system is presented. The versatile platform, composed by a substrate of knitted fibers of isotactic polypropylene (iPP) mesh and a coating of thermosensitive poly(N‐isopropylacrylamide‐co‐N,N’‐methylene bis(acrylamide) (PNIPAAm‐co‐MBA) hydrogel, covalently bonded to the mesh surface, after cold‐plasma surface treatment and radical polymerization, is intended to undergo variations in its geometry via its reversible folding/unfolding behavior. The study is the first to trace the 3D movement of a flat surgical mesh, intended to repair hernia defects, under temperature and humidity control. An infrared thermographic camera and an optical microscope are used to evaluate the macroscopic and microscopic structure stimulus response. The presence of the PP substrate and the distribution of the gel surrounding the PP threads, affect both the PNIPAAM gel expansion/contraction as well as the time of folding/unfolding response. Furthermore, PP‐g‐PNIPAAm meshes show an increase in the bursting strength of ≈16% with respect to the uncoated mesh, offering a strongest and adaptable system for its future implantation in human body. The findings reported offer unprecedented application possibilities in the biomedical field. The 4D concept for creating dynamic devices, that can change their shape and/or function under controlled stimulus, is an emerging technology. Here, a smart responsive mesh material, able to self‐evolve under temperature and humidity variations, is developed. The specific stimulus response is assessed using a thermal infrared imaging camera and optical microscope for the macro‐ and microstructure evaluations, respectively.</description><subject>Acrylamide</subject><subject>Biomedical materials</subject><subject>Bursting strength</subject><subject>Cold treatment</subject><subject>dynamic devices</subject><subject>Folding</subject><subject>Hydrogels</subject><subject>Implantation</subject><subject>Infrared cameras</subject><subject>Isopropylacrylamide</subject><subject>Materials science</subject><subject>Moisture control</subject><subject>Optical microscopes</subject><subject>Polypropylene</subject><subject>polypropylene meshes</subject><subject>Substrates</subject><subject>Surface treatment</subject><subject>surgical implants</subject><subject>Thermography</subject><subject>thermosensitive hydrogels</subject><subject>Three dimensional motion</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqFkMFLwzAUh4soOKdXzwGv20zSNmm8jc1NYVNwEwQPIUteXEfX1KSj7L-3YzKPvsN77_D93oMvim4JHhCM6b0ydjugmGKckCQ9izqEEdaPMc3OTzv5uIyuQthgTDiPk070uXSN8gbVa0Av0KAplOBVnbsSOYsWO_-Va1WgOYQ1BNTk9RolY_QGoXJlgAe0cLbuofG-VNtc95AqDRoaVdVqVcB1dGFVEeDmd3aj98njcvTUn71On0fDWV_HgqV9JRRPVZpRbky6ygjlGCxowpKVyjRkRIiE47ZRoXnKjdWMgmXEZMA4tSzuRnfHu5V33zsItdy4nS_bl5ImsUhF2lZLDY6U9i4ED1ZWPt8qv5cEy4NAeRAoTwLbgDgGmryA_T-0HI4n87_sD0rQcvg</recordid><startdate>20200901</startdate><enddate>20200901</enddate><creator>Lanzalaco, Sonia</creator><creator>Turon, Pau</creator><creator>Weis, Christine</creator><creator>Mata, Christian</creator><creator>Planas, Eulàlia</creator><creator>Alemán, Carlos</creator><creator>Armelin, Elaine</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-4462-6075</orcidid><orcidid>https://orcid.org/0000-0002-0658-7696</orcidid><orcidid>https://orcid.org/0000-0001-6354-9701</orcidid><orcidid>https://orcid.org/0000-0002-7053-3959</orcidid><orcidid>https://orcid.org/0000-0002-8604-5095</orcidid><orcidid>https://orcid.org/0000-0003-4768-5062</orcidid></search><sort><creationdate>20200901</creationdate><title>Toward the New Generation of Surgical Meshes with 4D Response: Soft, Dynamic, and Adaptable</title><author>Lanzalaco, Sonia ; Turon, Pau ; Weis, Christine ; Mata, Christian ; Planas, Eulàlia ; Alemán, Carlos ; Armelin, Elaine</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3965-a9a75a5827dd5b81270efec164ba8ce819947099429c757dfc62ef61d8e672f63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Acrylamide</topic><topic>Biomedical materials</topic><topic>Bursting strength</topic><topic>Cold treatment</topic><topic>dynamic devices</topic><topic>Folding</topic><topic>Hydrogels</topic><topic>Implantation</topic><topic>Infrared cameras</topic><topic>Isopropylacrylamide</topic><topic>Materials science</topic><topic>Moisture control</topic><topic>Optical microscopes</topic><topic>Polypropylene</topic><topic>polypropylene meshes</topic><topic>Substrates</topic><topic>Surface treatment</topic><topic>surgical implants</topic><topic>Thermography</topic><topic>thermosensitive hydrogels</topic><topic>Three dimensional motion</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lanzalaco, Sonia</creatorcontrib><creatorcontrib>Turon, Pau</creatorcontrib><creatorcontrib>Weis, Christine</creatorcontrib><creatorcontrib>Mata, Christian</creatorcontrib><creatorcontrib>Planas, Eulàlia</creatorcontrib><creatorcontrib>Alemán, Carlos</creatorcontrib><creatorcontrib>Armelin, Elaine</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lanzalaco, Sonia</au><au>Turon, Pau</au><au>Weis, Christine</au><au>Mata, Christian</au><au>Planas, Eulàlia</au><au>Alemán, Carlos</au><au>Armelin, Elaine</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Toward the New Generation of Surgical Meshes with 4D Response: Soft, Dynamic, and Adaptable</atitle><jtitle>Advanced functional materials</jtitle><date>2020-09-01</date><risdate>2020</risdate><volume>30</volume><issue>36</issue><epage>n/a</epage><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>Herein, a facile approach toward transforming a 2D polypropylene flexible mesh material into a 4D dynamic system is presented. The versatile platform, composed by a substrate of knitted fibers of isotactic polypropylene (iPP) mesh and a coating of thermosensitive poly(N‐isopropylacrylamide‐co‐N,N’‐methylene bis(acrylamide) (PNIPAAm‐co‐MBA) hydrogel, covalently bonded to the mesh surface, after cold‐plasma surface treatment and radical polymerization, is intended to undergo variations in its geometry via its reversible folding/unfolding behavior. The study is the first to trace the 3D movement of a flat surgical mesh, intended to repair hernia defects, under temperature and humidity control. An infrared thermographic camera and an optical microscope are used to evaluate the macroscopic and microscopic structure stimulus response. The presence of the PP substrate and the distribution of the gel surrounding the PP threads, affect both the PNIPAAM gel expansion/contraction as well as the time of folding/unfolding response. Furthermore, PP‐g‐PNIPAAm meshes show an increase in the bursting strength of ≈16% with respect to the uncoated mesh, offering a strongest and adaptable system for its future implantation in human body. The findings reported offer unprecedented application possibilities in the biomedical field. The 4D concept for creating dynamic devices, that can change their shape and/or function under controlled stimulus, is an emerging technology. Here, a smart responsive mesh material, able to self‐evolve under temperature and humidity variations, is developed. The specific stimulus response is assessed using a thermal infrared imaging camera and optical microscope for the macro‐ and microstructure evaluations, respectively.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adfm.202004145</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-4462-6075</orcidid><orcidid>https://orcid.org/0000-0002-0658-7696</orcidid><orcidid>https://orcid.org/0000-0001-6354-9701</orcidid><orcidid>https://orcid.org/0000-0002-7053-3959</orcidid><orcidid>https://orcid.org/0000-0002-8604-5095</orcidid><orcidid>https://orcid.org/0000-0003-4768-5062</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1616-301X
ispartof Advanced functional materials, 2020-09, Vol.30 (36), p.n/a
issn 1616-301X
1616-3028
language eng
recordid cdi_proquest_journals_2439595555
source Wiley Online Library - AutoHoldings Journals
subjects Acrylamide
Biomedical materials
Bursting strength
Cold treatment
dynamic devices
Folding
Hydrogels
Implantation
Infrared cameras
Isopropylacrylamide
Materials science
Moisture control
Optical microscopes
Polypropylene
polypropylene meshes
Substrates
Surface treatment
surgical implants
Thermography
thermosensitive hydrogels
Three dimensional motion
title Toward the New Generation of Surgical Meshes with 4D Response: Soft, Dynamic, and Adaptable
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T04%3A45%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Toward%20the%20New%20Generation%20of%20Surgical%20Meshes%20with%204D%20Response:%20Soft,%20Dynamic,%20and%20Adaptable&rft.jtitle=Advanced%20functional%20materials&rft.au=Lanzalaco,%20Sonia&rft.date=2020-09-01&rft.volume=30&rft.issue=36&rft.epage=n/a&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.202004145&rft_dat=%3Cproquest_cross%3E2439595555%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2439595555&rft_id=info:pmid/&rfr_iscdi=true