Flexible and Semi‐Transparent Ultra‐Thin CIGSe Solar Cells Prepared on Ultra‐Thin Glass Substrate: A Key to Flexible Bifacial Photovoltaic Applications

For applications to semi‐transparent and/or bifacial solar cells in building‐integrated photovoltaics and building‐applied photovoltaics, studies are underway to reduce the processing cost and time by decreasing the thickness of Cu(In1−x,Gax)Se2 (CIGSe) absorber to the ultra‐thin scale (≤500 nm). To...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced functional materials 2020-09, Vol.30 (36), p.n/a
Hauptverfasser: Kim, Dongryeol, Shin, Sang Su, Lee, Sang Min, Cho, Jun‐Sik, Yun, Jae Ho, Lee, Ho Seong, Park, Joo Hyung
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 36
container_start_page
container_title Advanced functional materials
container_volume 30
creator Kim, Dongryeol
Shin, Sang Su
Lee, Sang Min
Cho, Jun‐Sik
Yun, Jae Ho
Lee, Ho Seong
Park, Joo Hyung
description For applications to semi‐transparent and/or bifacial solar cells in building‐integrated photovoltaics and building‐applied photovoltaics, studies are underway to reduce the processing cost and time by decreasing the thickness of Cu(In1−x,Gax)Se2 (CIGSe) absorber to the ultra‐thin scale (≤500 nm). To dynamically and affordably meet the growing demand for electric power, daylighting, and architectural aesthetics of buildings in urban area, flexible semi‐transparent ultra‐thin (F‐STUT) CIGSe solar cells are proposed on flexible ultra‐thin glass (UTG) and compared with rigid semi‐transparent ultra‐thin (STUT) CIGSe solar cells fabricated on soda‐lime glass (SLG). At all the tested deposition temperatures of CIGSe, the F‐STUT CIGSe solar cells exhibit superior performance compared to the rigid STUT CIGSe solar cells. Furthermore, through realistic measurement under ≈1.3‐sun illumination, maximum bifacial power conversion efficiency of 11.90% and 13.23% are obtained for SLG and UTG, respectively. The major advantages of using UTG instead of SLG are not only the intrinsic characteristics of UTG, such as flexibility and high transmittance, but also collateral benefits such as the larger CIGSe grain size at the deposition temperature, better CIGSe crystalline quality, more precise controllability of the alkali element, and reduced thickness of the interfacial GaOx layer, which enhance the photovoltaic parameters. Flexible and semi‐transparent ultra‐thin Cu(In,Ga)Se2 solar cells on ultra‐thin glass exhibit superior bifacial photovoltaic conversion efficiency to conventional ones on soda‐lime glass, owing to not only the enlarged CIGSe grain size based on reduced substrate thickness but also collateral benefits such as reduced formation of interfacial GaOx depending on different features of grain boundary paths funneling Na.
doi_str_mv 10.1002/adfm.202001775
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2439595527</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2439595527</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3175-8f0839928d4142c902134682f468275587982654c561bffa28dd2c9fcfcee3163</originalsourceid><addsrcrecordid>eNqFkb1OwzAUhSMEEqWwMltiTrGdOD9sIdBSUQRSWoktch1bdeXGwXaBbjwCL8DL8SQkFBUxsdx7dfSde4bjeacIDhCE-JxWYjXAEEOI4pjseT0UocgPIE72dzd6PPSOrF1-M0HY8z6Gir_KueKA1hUo-Ep-vr1PDa1tQw2vHZgpZ2inLWQN8vGo4KDQihqQc6UseDC8Ayug67_oSFFrQbGe21Z0_AJk4JZvgNNgl3gpBWWSKvCw0E4_a-WoZCBrGiUZdVLX9tg7EFRZfvKz-95seD3Nb_zJ_WicZxOfBSgmfiJgEqQpTqoQhZilEKMgjBIsuhETksRpgiMSMhKhuRC0BasWE0wwzgMUBX3vbPu3Mfppza0rl3pt6jayxGGQkpQQHLfUYEsxo601XJSNkStqNiWCZVdB2VVQ7ipoDenW8CIV3_xDl9nV8O7X-wXXm43h</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2439595527</pqid></control><display><type>article</type><title>Flexible and Semi‐Transparent Ultra‐Thin CIGSe Solar Cells Prepared on Ultra‐Thin Glass Substrate: A Key to Flexible Bifacial Photovoltaic Applications</title><source>Wiley Online Library - AutoHoldings Journals</source><creator>Kim, Dongryeol ; Shin, Sang Su ; Lee, Sang Min ; Cho, Jun‐Sik ; Yun, Jae Ho ; Lee, Ho Seong ; Park, Joo Hyung</creator><creatorcontrib>Kim, Dongryeol ; Shin, Sang Su ; Lee, Sang Min ; Cho, Jun‐Sik ; Yun, Jae Ho ; Lee, Ho Seong ; Park, Joo Hyung</creatorcontrib><description>For applications to semi‐transparent and/or bifacial solar cells in building‐integrated photovoltaics and building‐applied photovoltaics, studies are underway to reduce the processing cost and time by decreasing the thickness of Cu(In1−x,Gax)Se2 (CIGSe) absorber to the ultra‐thin scale (≤500 nm). To dynamically and affordably meet the growing demand for electric power, daylighting, and architectural aesthetics of buildings in urban area, flexible semi‐transparent ultra‐thin (F‐STUT) CIGSe solar cells are proposed on flexible ultra‐thin glass (UTG) and compared with rigid semi‐transparent ultra‐thin (STUT) CIGSe solar cells fabricated on soda‐lime glass (SLG). At all the tested deposition temperatures of CIGSe, the F‐STUT CIGSe solar cells exhibit superior performance compared to the rigid STUT CIGSe solar cells. Furthermore, through realistic measurement under ≈1.3‐sun illumination, maximum bifacial power conversion efficiency of 11.90% and 13.23% are obtained for SLG and UTG, respectively. The major advantages of using UTG instead of SLG are not only the intrinsic characteristics of UTG, such as flexibility and high transmittance, but also collateral benefits such as the larger CIGSe grain size at the deposition temperature, better CIGSe crystalline quality, more precise controllability of the alkali element, and reduced thickness of the interfacial GaOx layer, which enhance the photovoltaic parameters. Flexible and semi‐transparent ultra‐thin Cu(In,Ga)Se2 solar cells on ultra‐thin glass exhibit superior bifacial photovoltaic conversion efficiency to conventional ones on soda‐lime glass, owing to not only the enlarged CIGSe grain size based on reduced substrate thickness but also collateral benefits such as reduced formation of interfacial GaOx depending on different features of grain boundary paths funneling Na.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.202001775</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>bifacial photovoltaics ; Controllability ; Deposition ; Electric power demand ; Energy conversion efficiency ; flexible semi‐transparent solar cells ; Glass substrates ; Grain size ; indium‐doped tin oxide back‐contact ; Materials science ; NaF post‐deposition treatment ; Photovoltaic cells ; Solar cells ; Thickness ; ultra‐thin Cu(In,Ga)Se 2 ; ultra‐thin glass ; Urban areas</subject><ispartof>Advanced functional materials, 2020-09, Vol.30 (36), p.n/a</ispartof><rights>2020 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>2020 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3175-8f0839928d4142c902134682f468275587982654c561bffa28dd2c9fcfcee3163</citedby><cites>FETCH-LOGICAL-c3175-8f0839928d4142c902134682f468275587982654c561bffa28dd2c9fcfcee3163</cites><orcidid>0000-0002-3795-2836</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadfm.202001775$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadfm.202001775$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Kim, Dongryeol</creatorcontrib><creatorcontrib>Shin, Sang Su</creatorcontrib><creatorcontrib>Lee, Sang Min</creatorcontrib><creatorcontrib>Cho, Jun‐Sik</creatorcontrib><creatorcontrib>Yun, Jae Ho</creatorcontrib><creatorcontrib>Lee, Ho Seong</creatorcontrib><creatorcontrib>Park, Joo Hyung</creatorcontrib><title>Flexible and Semi‐Transparent Ultra‐Thin CIGSe Solar Cells Prepared on Ultra‐Thin Glass Substrate: A Key to Flexible Bifacial Photovoltaic Applications</title><title>Advanced functional materials</title><description>For applications to semi‐transparent and/or bifacial solar cells in building‐integrated photovoltaics and building‐applied photovoltaics, studies are underway to reduce the processing cost and time by decreasing the thickness of Cu(In1−x,Gax)Se2 (CIGSe) absorber to the ultra‐thin scale (≤500 nm). To dynamically and affordably meet the growing demand for electric power, daylighting, and architectural aesthetics of buildings in urban area, flexible semi‐transparent ultra‐thin (F‐STUT) CIGSe solar cells are proposed on flexible ultra‐thin glass (UTG) and compared with rigid semi‐transparent ultra‐thin (STUT) CIGSe solar cells fabricated on soda‐lime glass (SLG). At all the tested deposition temperatures of CIGSe, the F‐STUT CIGSe solar cells exhibit superior performance compared to the rigid STUT CIGSe solar cells. Furthermore, through realistic measurement under ≈1.3‐sun illumination, maximum bifacial power conversion efficiency of 11.90% and 13.23% are obtained for SLG and UTG, respectively. The major advantages of using UTG instead of SLG are not only the intrinsic characteristics of UTG, such as flexibility and high transmittance, but also collateral benefits such as the larger CIGSe grain size at the deposition temperature, better CIGSe crystalline quality, more precise controllability of the alkali element, and reduced thickness of the interfacial GaOx layer, which enhance the photovoltaic parameters. Flexible and semi‐transparent ultra‐thin Cu(In,Ga)Se2 solar cells on ultra‐thin glass exhibit superior bifacial photovoltaic conversion efficiency to conventional ones on soda‐lime glass, owing to not only the enlarged CIGSe grain size based on reduced substrate thickness but also collateral benefits such as reduced formation of interfacial GaOx depending on different features of grain boundary paths funneling Na.</description><subject>bifacial photovoltaics</subject><subject>Controllability</subject><subject>Deposition</subject><subject>Electric power demand</subject><subject>Energy conversion efficiency</subject><subject>flexible semi‐transparent solar cells</subject><subject>Glass substrates</subject><subject>Grain size</subject><subject>indium‐doped tin oxide back‐contact</subject><subject>Materials science</subject><subject>NaF post‐deposition treatment</subject><subject>Photovoltaic cells</subject><subject>Solar cells</subject><subject>Thickness</subject><subject>ultra‐thin Cu(In,Ga)Se 2</subject><subject>ultra‐thin glass</subject><subject>Urban areas</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqFkb1OwzAUhSMEEqWwMltiTrGdOD9sIdBSUQRSWoktch1bdeXGwXaBbjwCL8DL8SQkFBUxsdx7dfSde4bjeacIDhCE-JxWYjXAEEOI4pjseT0UocgPIE72dzd6PPSOrF1-M0HY8z6Gir_KueKA1hUo-Ep-vr1PDa1tQw2vHZgpZ2inLWQN8vGo4KDQihqQc6UseDC8Ayug67_oSFFrQbGe21Z0_AJk4JZvgNNgl3gpBWWSKvCw0E4_a-WoZCBrGiUZdVLX9tg7EFRZfvKz-95seD3Nb_zJ_WicZxOfBSgmfiJgEqQpTqoQhZilEKMgjBIsuhETksRpgiMSMhKhuRC0BasWE0wwzgMUBX3vbPu3Mfppza0rl3pt6jayxGGQkpQQHLfUYEsxo601XJSNkStqNiWCZVdB2VVQ7ipoDenW8CIV3_xDl9nV8O7X-wXXm43h</recordid><startdate>20200901</startdate><enddate>20200901</enddate><creator>Kim, Dongryeol</creator><creator>Shin, Sang Su</creator><creator>Lee, Sang Min</creator><creator>Cho, Jun‐Sik</creator><creator>Yun, Jae Ho</creator><creator>Lee, Ho Seong</creator><creator>Park, Joo Hyung</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-3795-2836</orcidid></search><sort><creationdate>20200901</creationdate><title>Flexible and Semi‐Transparent Ultra‐Thin CIGSe Solar Cells Prepared on Ultra‐Thin Glass Substrate: A Key to Flexible Bifacial Photovoltaic Applications</title><author>Kim, Dongryeol ; Shin, Sang Su ; Lee, Sang Min ; Cho, Jun‐Sik ; Yun, Jae Ho ; Lee, Ho Seong ; Park, Joo Hyung</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3175-8f0839928d4142c902134682f468275587982654c561bffa28dd2c9fcfcee3163</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>bifacial photovoltaics</topic><topic>Controllability</topic><topic>Deposition</topic><topic>Electric power demand</topic><topic>Energy conversion efficiency</topic><topic>flexible semi‐transparent solar cells</topic><topic>Glass substrates</topic><topic>Grain size</topic><topic>indium‐doped tin oxide back‐contact</topic><topic>Materials science</topic><topic>NaF post‐deposition treatment</topic><topic>Photovoltaic cells</topic><topic>Solar cells</topic><topic>Thickness</topic><topic>ultra‐thin Cu(In,Ga)Se 2</topic><topic>ultra‐thin glass</topic><topic>Urban areas</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Dongryeol</creatorcontrib><creatorcontrib>Shin, Sang Su</creatorcontrib><creatorcontrib>Lee, Sang Min</creatorcontrib><creatorcontrib>Cho, Jun‐Sik</creatorcontrib><creatorcontrib>Yun, Jae Ho</creatorcontrib><creatorcontrib>Lee, Ho Seong</creatorcontrib><creatorcontrib>Park, Joo Hyung</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Dongryeol</au><au>Shin, Sang Su</au><au>Lee, Sang Min</au><au>Cho, Jun‐Sik</au><au>Yun, Jae Ho</au><au>Lee, Ho Seong</au><au>Park, Joo Hyung</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Flexible and Semi‐Transparent Ultra‐Thin CIGSe Solar Cells Prepared on Ultra‐Thin Glass Substrate: A Key to Flexible Bifacial Photovoltaic Applications</atitle><jtitle>Advanced functional materials</jtitle><date>2020-09-01</date><risdate>2020</risdate><volume>30</volume><issue>36</issue><epage>n/a</epage><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>For applications to semi‐transparent and/or bifacial solar cells in building‐integrated photovoltaics and building‐applied photovoltaics, studies are underway to reduce the processing cost and time by decreasing the thickness of Cu(In1−x,Gax)Se2 (CIGSe) absorber to the ultra‐thin scale (≤500 nm). To dynamically and affordably meet the growing demand for electric power, daylighting, and architectural aesthetics of buildings in urban area, flexible semi‐transparent ultra‐thin (F‐STUT) CIGSe solar cells are proposed on flexible ultra‐thin glass (UTG) and compared with rigid semi‐transparent ultra‐thin (STUT) CIGSe solar cells fabricated on soda‐lime glass (SLG). At all the tested deposition temperatures of CIGSe, the F‐STUT CIGSe solar cells exhibit superior performance compared to the rigid STUT CIGSe solar cells. Furthermore, through realistic measurement under ≈1.3‐sun illumination, maximum bifacial power conversion efficiency of 11.90% and 13.23% are obtained for SLG and UTG, respectively. The major advantages of using UTG instead of SLG are not only the intrinsic characteristics of UTG, such as flexibility and high transmittance, but also collateral benefits such as the larger CIGSe grain size at the deposition temperature, better CIGSe crystalline quality, more precise controllability of the alkali element, and reduced thickness of the interfacial GaOx layer, which enhance the photovoltaic parameters. Flexible and semi‐transparent ultra‐thin Cu(In,Ga)Se2 solar cells on ultra‐thin glass exhibit superior bifacial photovoltaic conversion efficiency to conventional ones on soda‐lime glass, owing to not only the enlarged CIGSe grain size based on reduced substrate thickness but also collateral benefits such as reduced formation of interfacial GaOx depending on different features of grain boundary paths funneling Na.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adfm.202001775</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-3795-2836</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1616-301X
ispartof Advanced functional materials, 2020-09, Vol.30 (36), p.n/a
issn 1616-301X
1616-3028
language eng
recordid cdi_proquest_journals_2439595527
source Wiley Online Library - AutoHoldings Journals
subjects bifacial photovoltaics
Controllability
Deposition
Electric power demand
Energy conversion efficiency
flexible semi‐transparent solar cells
Glass substrates
Grain size
indium‐doped tin oxide back‐contact
Materials science
NaF post‐deposition treatment
Photovoltaic cells
Solar cells
Thickness
ultra‐thin Cu(In,Ga)Se 2
ultra‐thin glass
Urban areas
title Flexible and Semi‐Transparent Ultra‐Thin CIGSe Solar Cells Prepared on Ultra‐Thin Glass Substrate: A Key to Flexible Bifacial Photovoltaic Applications
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T07%3A46%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Flexible%20and%20Semi%E2%80%90Transparent%20Ultra%E2%80%90Thin%20CIGSe%20Solar%20Cells%20Prepared%20on%20Ultra%E2%80%90Thin%20Glass%20Substrate:%20A%20Key%20to%20Flexible%20Bifacial%20Photovoltaic%20Applications&rft.jtitle=Advanced%20functional%20materials&rft.au=Kim,%20Dongryeol&rft.date=2020-09-01&rft.volume=30&rft.issue=36&rft.epage=n/a&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.202001775&rft_dat=%3Cproquest_cross%3E2439595527%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2439595527&rft_id=info:pmid/&rfr_iscdi=true