Flexible and Semi‐Transparent Ultra‐Thin CIGSe Solar Cells Prepared on Ultra‐Thin Glass Substrate: A Key to Flexible Bifacial Photovoltaic Applications
For applications to semi‐transparent and/or bifacial solar cells in building‐integrated photovoltaics and building‐applied photovoltaics, studies are underway to reduce the processing cost and time by decreasing the thickness of Cu(In1−x,Gax)Se2 (CIGSe) absorber to the ultra‐thin scale (≤500 nm). To...
Gespeichert in:
Veröffentlicht in: | Advanced functional materials 2020-09, Vol.30 (36), p.n/a |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 36 |
container_start_page | |
container_title | Advanced functional materials |
container_volume | 30 |
creator | Kim, Dongryeol Shin, Sang Su Lee, Sang Min Cho, Jun‐Sik Yun, Jae Ho Lee, Ho Seong Park, Joo Hyung |
description | For applications to semi‐transparent and/or bifacial solar cells in building‐integrated photovoltaics and building‐applied photovoltaics, studies are underway to reduce the processing cost and time by decreasing the thickness of Cu(In1−x,Gax)Se2 (CIGSe) absorber to the ultra‐thin scale (≤500 nm). To dynamically and affordably meet the growing demand for electric power, daylighting, and architectural aesthetics of buildings in urban area, flexible semi‐transparent ultra‐thin (F‐STUT) CIGSe solar cells are proposed on flexible ultra‐thin glass (UTG) and compared with rigid semi‐transparent ultra‐thin (STUT) CIGSe solar cells fabricated on soda‐lime glass (SLG). At all the tested deposition temperatures of CIGSe, the F‐STUT CIGSe solar cells exhibit superior performance compared to the rigid STUT CIGSe solar cells. Furthermore, through realistic measurement under ≈1.3‐sun illumination, maximum bifacial power conversion efficiency of 11.90% and 13.23% are obtained for SLG and UTG, respectively. The major advantages of using UTG instead of SLG are not only the intrinsic characteristics of UTG, such as flexibility and high transmittance, but also collateral benefits such as the larger CIGSe grain size at the deposition temperature, better CIGSe crystalline quality, more precise controllability of the alkali element, and reduced thickness of the interfacial GaOx layer, which enhance the photovoltaic parameters.
Flexible and semi‐transparent ultra‐thin Cu(In,Ga)Se2 solar cells on ultra‐thin glass exhibit superior bifacial photovoltaic conversion efficiency to conventional ones on soda‐lime glass, owing to not only the enlarged CIGSe grain size based on reduced substrate thickness but also collateral benefits such as reduced formation of interfacial GaOx depending on different features of grain boundary paths funneling Na. |
doi_str_mv | 10.1002/adfm.202001775 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2439595527</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2439595527</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3175-8f0839928d4142c902134682f468275587982654c561bffa28dd2c9fcfcee3163</originalsourceid><addsrcrecordid>eNqFkb1OwzAUhSMEEqWwMltiTrGdOD9sIdBSUQRSWoktch1bdeXGwXaBbjwCL8DL8SQkFBUxsdx7dfSde4bjeacIDhCE-JxWYjXAEEOI4pjseT0UocgPIE72dzd6PPSOrF1-M0HY8z6Gir_KueKA1hUo-Ep-vr1PDa1tQw2vHZgpZ2inLWQN8vGo4KDQihqQc6UseDC8Ayug67_oSFFrQbGe21Z0_AJk4JZvgNNgl3gpBWWSKvCw0E4_a-WoZCBrGiUZdVLX9tg7EFRZfvKz-95seD3Nb_zJ_WicZxOfBSgmfiJgEqQpTqoQhZilEKMgjBIsuhETksRpgiMSMhKhuRC0BasWE0wwzgMUBX3vbPu3Mfppza0rl3pt6jayxGGQkpQQHLfUYEsxo601XJSNkStqNiWCZVdB2VVQ7ipoDenW8CIV3_xDl9nV8O7X-wXXm43h</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2439595527</pqid></control><display><type>article</type><title>Flexible and Semi‐Transparent Ultra‐Thin CIGSe Solar Cells Prepared on Ultra‐Thin Glass Substrate: A Key to Flexible Bifacial Photovoltaic Applications</title><source>Wiley Online Library - AutoHoldings Journals</source><creator>Kim, Dongryeol ; Shin, Sang Su ; Lee, Sang Min ; Cho, Jun‐Sik ; Yun, Jae Ho ; Lee, Ho Seong ; Park, Joo Hyung</creator><creatorcontrib>Kim, Dongryeol ; Shin, Sang Su ; Lee, Sang Min ; Cho, Jun‐Sik ; Yun, Jae Ho ; Lee, Ho Seong ; Park, Joo Hyung</creatorcontrib><description>For applications to semi‐transparent and/or bifacial solar cells in building‐integrated photovoltaics and building‐applied photovoltaics, studies are underway to reduce the processing cost and time by decreasing the thickness of Cu(In1−x,Gax)Se2 (CIGSe) absorber to the ultra‐thin scale (≤500 nm). To dynamically and affordably meet the growing demand for electric power, daylighting, and architectural aesthetics of buildings in urban area, flexible semi‐transparent ultra‐thin (F‐STUT) CIGSe solar cells are proposed on flexible ultra‐thin glass (UTG) and compared with rigid semi‐transparent ultra‐thin (STUT) CIGSe solar cells fabricated on soda‐lime glass (SLG). At all the tested deposition temperatures of CIGSe, the F‐STUT CIGSe solar cells exhibit superior performance compared to the rigid STUT CIGSe solar cells. Furthermore, through realistic measurement under ≈1.3‐sun illumination, maximum bifacial power conversion efficiency of 11.90% and 13.23% are obtained for SLG and UTG, respectively. The major advantages of using UTG instead of SLG are not only the intrinsic characteristics of UTG, such as flexibility and high transmittance, but also collateral benefits such as the larger CIGSe grain size at the deposition temperature, better CIGSe crystalline quality, more precise controllability of the alkali element, and reduced thickness of the interfacial GaOx layer, which enhance the photovoltaic parameters.
Flexible and semi‐transparent ultra‐thin Cu(In,Ga)Se2 solar cells on ultra‐thin glass exhibit superior bifacial photovoltaic conversion efficiency to conventional ones on soda‐lime glass, owing to not only the enlarged CIGSe grain size based on reduced substrate thickness but also collateral benefits such as reduced formation of interfacial GaOx depending on different features of grain boundary paths funneling Na.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.202001775</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>bifacial photovoltaics ; Controllability ; Deposition ; Electric power demand ; Energy conversion efficiency ; flexible semi‐transparent solar cells ; Glass substrates ; Grain size ; indium‐doped tin oxide back‐contact ; Materials science ; NaF post‐deposition treatment ; Photovoltaic cells ; Solar cells ; Thickness ; ultra‐thin Cu(In,Ga)Se 2 ; ultra‐thin glass ; Urban areas</subject><ispartof>Advanced functional materials, 2020-09, Vol.30 (36), p.n/a</ispartof><rights>2020 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><rights>2020 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3175-8f0839928d4142c902134682f468275587982654c561bffa28dd2c9fcfcee3163</citedby><cites>FETCH-LOGICAL-c3175-8f0839928d4142c902134682f468275587982654c561bffa28dd2c9fcfcee3163</cites><orcidid>0000-0002-3795-2836</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadfm.202001775$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadfm.202001775$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Kim, Dongryeol</creatorcontrib><creatorcontrib>Shin, Sang Su</creatorcontrib><creatorcontrib>Lee, Sang Min</creatorcontrib><creatorcontrib>Cho, Jun‐Sik</creatorcontrib><creatorcontrib>Yun, Jae Ho</creatorcontrib><creatorcontrib>Lee, Ho Seong</creatorcontrib><creatorcontrib>Park, Joo Hyung</creatorcontrib><title>Flexible and Semi‐Transparent Ultra‐Thin CIGSe Solar Cells Prepared on Ultra‐Thin Glass Substrate: A Key to Flexible Bifacial Photovoltaic Applications</title><title>Advanced functional materials</title><description>For applications to semi‐transparent and/or bifacial solar cells in building‐integrated photovoltaics and building‐applied photovoltaics, studies are underway to reduce the processing cost and time by decreasing the thickness of Cu(In1−x,Gax)Se2 (CIGSe) absorber to the ultra‐thin scale (≤500 nm). To dynamically and affordably meet the growing demand for electric power, daylighting, and architectural aesthetics of buildings in urban area, flexible semi‐transparent ultra‐thin (F‐STUT) CIGSe solar cells are proposed on flexible ultra‐thin glass (UTG) and compared with rigid semi‐transparent ultra‐thin (STUT) CIGSe solar cells fabricated on soda‐lime glass (SLG). At all the tested deposition temperatures of CIGSe, the F‐STUT CIGSe solar cells exhibit superior performance compared to the rigid STUT CIGSe solar cells. Furthermore, through realistic measurement under ≈1.3‐sun illumination, maximum bifacial power conversion efficiency of 11.90% and 13.23% are obtained for SLG and UTG, respectively. The major advantages of using UTG instead of SLG are not only the intrinsic characteristics of UTG, such as flexibility and high transmittance, but also collateral benefits such as the larger CIGSe grain size at the deposition temperature, better CIGSe crystalline quality, more precise controllability of the alkali element, and reduced thickness of the interfacial GaOx layer, which enhance the photovoltaic parameters.
Flexible and semi‐transparent ultra‐thin Cu(In,Ga)Se2 solar cells on ultra‐thin glass exhibit superior bifacial photovoltaic conversion efficiency to conventional ones on soda‐lime glass, owing to not only the enlarged CIGSe grain size based on reduced substrate thickness but also collateral benefits such as reduced formation of interfacial GaOx depending on different features of grain boundary paths funneling Na.</description><subject>bifacial photovoltaics</subject><subject>Controllability</subject><subject>Deposition</subject><subject>Electric power demand</subject><subject>Energy conversion efficiency</subject><subject>flexible semi‐transparent solar cells</subject><subject>Glass substrates</subject><subject>Grain size</subject><subject>indium‐doped tin oxide back‐contact</subject><subject>Materials science</subject><subject>NaF post‐deposition treatment</subject><subject>Photovoltaic cells</subject><subject>Solar cells</subject><subject>Thickness</subject><subject>ultra‐thin Cu(In,Ga)Se 2</subject><subject>ultra‐thin glass</subject><subject>Urban areas</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqFkb1OwzAUhSMEEqWwMltiTrGdOD9sIdBSUQRSWoktch1bdeXGwXaBbjwCL8DL8SQkFBUxsdx7dfSde4bjeacIDhCE-JxWYjXAEEOI4pjseT0UocgPIE72dzd6PPSOrF1-M0HY8z6Gir_KueKA1hUo-Ep-vr1PDa1tQw2vHZgpZ2inLWQN8vGo4KDQihqQc6UseDC8Ayug67_oSFFrQbGe21Z0_AJk4JZvgNNgl3gpBWWSKvCw0E4_a-WoZCBrGiUZdVLX9tg7EFRZfvKz-95seD3Nb_zJ_WicZxOfBSgmfiJgEqQpTqoQhZilEKMgjBIsuhETksRpgiMSMhKhuRC0BasWE0wwzgMUBX3vbPu3Mfppza0rl3pt6jayxGGQkpQQHLfUYEsxo601XJSNkStqNiWCZVdB2VVQ7ipoDenW8CIV3_xDl9nV8O7X-wXXm43h</recordid><startdate>20200901</startdate><enddate>20200901</enddate><creator>Kim, Dongryeol</creator><creator>Shin, Sang Su</creator><creator>Lee, Sang Min</creator><creator>Cho, Jun‐Sik</creator><creator>Yun, Jae Ho</creator><creator>Lee, Ho Seong</creator><creator>Park, Joo Hyung</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-3795-2836</orcidid></search><sort><creationdate>20200901</creationdate><title>Flexible and Semi‐Transparent Ultra‐Thin CIGSe Solar Cells Prepared on Ultra‐Thin Glass Substrate: A Key to Flexible Bifacial Photovoltaic Applications</title><author>Kim, Dongryeol ; Shin, Sang Su ; Lee, Sang Min ; Cho, Jun‐Sik ; Yun, Jae Ho ; Lee, Ho Seong ; Park, Joo Hyung</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3175-8f0839928d4142c902134682f468275587982654c561bffa28dd2c9fcfcee3163</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>bifacial photovoltaics</topic><topic>Controllability</topic><topic>Deposition</topic><topic>Electric power demand</topic><topic>Energy conversion efficiency</topic><topic>flexible semi‐transparent solar cells</topic><topic>Glass substrates</topic><topic>Grain size</topic><topic>indium‐doped tin oxide back‐contact</topic><topic>Materials science</topic><topic>NaF post‐deposition treatment</topic><topic>Photovoltaic cells</topic><topic>Solar cells</topic><topic>Thickness</topic><topic>ultra‐thin Cu(In,Ga)Se 2</topic><topic>ultra‐thin glass</topic><topic>Urban areas</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Dongryeol</creatorcontrib><creatorcontrib>Shin, Sang Su</creatorcontrib><creatorcontrib>Lee, Sang Min</creatorcontrib><creatorcontrib>Cho, Jun‐Sik</creatorcontrib><creatorcontrib>Yun, Jae Ho</creatorcontrib><creatorcontrib>Lee, Ho Seong</creatorcontrib><creatorcontrib>Park, Joo Hyung</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Dongryeol</au><au>Shin, Sang Su</au><au>Lee, Sang Min</au><au>Cho, Jun‐Sik</au><au>Yun, Jae Ho</au><au>Lee, Ho Seong</au><au>Park, Joo Hyung</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Flexible and Semi‐Transparent Ultra‐Thin CIGSe Solar Cells Prepared on Ultra‐Thin Glass Substrate: A Key to Flexible Bifacial Photovoltaic Applications</atitle><jtitle>Advanced functional materials</jtitle><date>2020-09-01</date><risdate>2020</risdate><volume>30</volume><issue>36</issue><epage>n/a</epage><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>For applications to semi‐transparent and/or bifacial solar cells in building‐integrated photovoltaics and building‐applied photovoltaics, studies are underway to reduce the processing cost and time by decreasing the thickness of Cu(In1−x,Gax)Se2 (CIGSe) absorber to the ultra‐thin scale (≤500 nm). To dynamically and affordably meet the growing demand for electric power, daylighting, and architectural aesthetics of buildings in urban area, flexible semi‐transparent ultra‐thin (F‐STUT) CIGSe solar cells are proposed on flexible ultra‐thin glass (UTG) and compared with rigid semi‐transparent ultra‐thin (STUT) CIGSe solar cells fabricated on soda‐lime glass (SLG). At all the tested deposition temperatures of CIGSe, the F‐STUT CIGSe solar cells exhibit superior performance compared to the rigid STUT CIGSe solar cells. Furthermore, through realistic measurement under ≈1.3‐sun illumination, maximum bifacial power conversion efficiency of 11.90% and 13.23% are obtained for SLG and UTG, respectively. The major advantages of using UTG instead of SLG are not only the intrinsic characteristics of UTG, such as flexibility and high transmittance, but also collateral benefits such as the larger CIGSe grain size at the deposition temperature, better CIGSe crystalline quality, more precise controllability of the alkali element, and reduced thickness of the interfacial GaOx layer, which enhance the photovoltaic parameters.
Flexible and semi‐transparent ultra‐thin Cu(In,Ga)Se2 solar cells on ultra‐thin glass exhibit superior bifacial photovoltaic conversion efficiency to conventional ones on soda‐lime glass, owing to not only the enlarged CIGSe grain size based on reduced substrate thickness but also collateral benefits such as reduced formation of interfacial GaOx depending on different features of grain boundary paths funneling Na.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adfm.202001775</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-3795-2836</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1616-301X |
ispartof | Advanced functional materials, 2020-09, Vol.30 (36), p.n/a |
issn | 1616-301X 1616-3028 |
language | eng |
recordid | cdi_proquest_journals_2439595527 |
source | Wiley Online Library - AutoHoldings Journals |
subjects | bifacial photovoltaics Controllability Deposition Electric power demand Energy conversion efficiency flexible semi‐transparent solar cells Glass substrates Grain size indium‐doped tin oxide back‐contact Materials science NaF post‐deposition treatment Photovoltaic cells Solar cells Thickness ultra‐thin Cu(In,Ga)Se 2 ultra‐thin glass Urban areas |
title | Flexible and Semi‐Transparent Ultra‐Thin CIGSe Solar Cells Prepared on Ultra‐Thin Glass Substrate: A Key to Flexible Bifacial Photovoltaic Applications |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T07%3A46%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Flexible%20and%20Semi%E2%80%90Transparent%20Ultra%E2%80%90Thin%20CIGSe%20Solar%20Cells%20Prepared%20on%20Ultra%E2%80%90Thin%20Glass%20Substrate:%20A%20Key%20to%20Flexible%20Bifacial%20Photovoltaic%20Applications&rft.jtitle=Advanced%20functional%20materials&rft.au=Kim,%20Dongryeol&rft.date=2020-09-01&rft.volume=30&rft.issue=36&rft.epage=n/a&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.202001775&rft_dat=%3Cproquest_cross%3E2439595527%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2439595527&rft_id=info:pmid/&rfr_iscdi=true |