New insights into a chaotic system with only a Lyapunov stable equilibrium

This paper gives some new insights into a chaotic system. The considered system has only one Lyapunov stable equilibrium and positive Lyapunov exponent in some certain parameter range, which means there coexists chaotic attractors and Lyapunov stable equibirium in system. First, from the perspective...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical methods in the applied sciences 2020-10, Vol.43 (15), p.9262-9279
Hauptverfasser: Chen, Biyu, Liu, Yongjian, Wei, Zhouchao, Feng, Chunsheng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 9279
container_issue 15
container_start_page 9262
container_title Mathematical methods in the applied sciences
container_volume 43
creator Chen, Biyu
Liu, Yongjian
Wei, Zhouchao
Feng, Chunsheng
description This paper gives some new insights into a chaotic system. The considered system has only one Lyapunov stable equilibrium and positive Lyapunov exponent in some certain parameter range, which means there coexists chaotic attractors and Lyapunov stable equibirium in system. First, from the perspective of analyzing the global structure of the system, based on the Poincaré compactification technique, the complete description of its dynamical behavior on the sphere at infinity is presented. The obtaining results show that its global dynamical behavior is very complex. Second, from a geometric perspective, the Jacobi stability of the system is investigated, including the unique equilibrium and a periodic orbit. Interestingly, we find that the unique Lyapunov stable equilibrium is always Jacobi unstable, a Lyapunov stable periodic orbit falls into both Jacobi stable and Jacobi unstable regions. It is shown that we might witness chaotic behavior of the system before the trajectories enter a neighborhood of the equilibrium point. It is hoped that the investigation of this paper can contribute to better understand and study the complex chaotic system with stable equilibria.
doi_str_mv 10.1002/mma.6619
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2439593502</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2439593502</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2939-695da3beca0b7b2ffbbdb82fe2946031a31a7d1ec218a026313b09c9039b28323</originalsourceid><addsrcrecordid>eNp10FFLwzAQB_AgCs4p-BECvvjSeZd0bfM4hk5l0xd9DkmWuoy22ZLW0W9v53wVDu7gftzBn5BbhAkCsIe6VpMsQ3FGRghCJJjm2TkZAeaQpAzTS3IV4xYACkQ2Iq9v9kBdE93Xpo3D0HqqqNko3zpDYx9bW9ODazfUN1U_rJa92nWN_6axVbqy1O47VzkdXFdfk4tSVdHe_PUx-Xx6_Jg_J8v3xct8tkwME1wkmZiuFdfWKNC5ZmWp9VoXrLRMpBlwVEPla7SGYaGAZRy5BmEEcKFZwRkfk7vT3V3w-87GVm59F5rhpWQpF1PBp3BU9ydlgo8x2FLugqtV6CWCPCYlh6TkMamBJid6cJXt_3VytZr9-h_7AGl2</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2439593502</pqid></control><display><type>article</type><title>New insights into a chaotic system with only a Lyapunov stable equilibrium</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Chen, Biyu ; Liu, Yongjian ; Wei, Zhouchao ; Feng, Chunsheng</creator><creatorcontrib>Chen, Biyu ; Liu, Yongjian ; Wei, Zhouchao ; Feng, Chunsheng</creatorcontrib><description>This paper gives some new insights into a chaotic system. The considered system has only one Lyapunov stable equilibrium and positive Lyapunov exponent in some certain parameter range, which means there coexists chaotic attractors and Lyapunov stable equibirium in system. First, from the perspective of analyzing the global structure of the system, based on the Poincaré compactification technique, the complete description of its dynamical behavior on the sphere at infinity is presented. The obtaining results show that its global dynamical behavior is very complex. Second, from a geometric perspective, the Jacobi stability of the system is investigated, including the unique equilibrium and a periodic orbit. Interestingly, we find that the unique Lyapunov stable equilibrium is always Jacobi unstable, a Lyapunov stable periodic orbit falls into both Jacobi stable and Jacobi unstable regions. It is shown that we might witness chaotic behavior of the system before the trajectories enter a neighborhood of the equilibrium point. It is hoped that the investigation of this paper can contribute to better understand and study the complex chaotic system with stable equilibria.</description><identifier>ISSN: 0170-4214</identifier><identifier>EISSN: 1099-1476</identifier><identifier>DOI: 10.1002/mma.6619</identifier><language>eng</language><publisher>Freiburg: Wiley Subscription Services, Inc</publisher><subject>Chaos theory ; chaotic system ; dynamics at infinity ; Jacobi analysis ; Liapunov exponents ; Orbital stability ; Orbits ; stable equilibrium</subject><ispartof>Mathematical methods in the applied sciences, 2020-10, Vol.43 (15), p.9262-9279</ispartof><rights>2020 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2939-695da3beca0b7b2ffbbdb82fe2946031a31a7d1ec218a026313b09c9039b28323</citedby><cites>FETCH-LOGICAL-c2939-695da3beca0b7b2ffbbdb82fe2946031a31a7d1ec218a026313b09c9039b28323</cites><orcidid>0000-0002-9500-0606 ; 0000-0002-0806-1671 ; 0000-0001-6981-748X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fmma.6619$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fmma.6619$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids></links><search><creatorcontrib>Chen, Biyu</creatorcontrib><creatorcontrib>Liu, Yongjian</creatorcontrib><creatorcontrib>Wei, Zhouchao</creatorcontrib><creatorcontrib>Feng, Chunsheng</creatorcontrib><title>New insights into a chaotic system with only a Lyapunov stable equilibrium</title><title>Mathematical methods in the applied sciences</title><description>This paper gives some new insights into a chaotic system. The considered system has only one Lyapunov stable equilibrium and positive Lyapunov exponent in some certain parameter range, which means there coexists chaotic attractors and Lyapunov stable equibirium in system. First, from the perspective of analyzing the global structure of the system, based on the Poincaré compactification technique, the complete description of its dynamical behavior on the sphere at infinity is presented. The obtaining results show that its global dynamical behavior is very complex. Second, from a geometric perspective, the Jacobi stability of the system is investigated, including the unique equilibrium and a periodic orbit. Interestingly, we find that the unique Lyapunov stable equilibrium is always Jacobi unstable, a Lyapunov stable periodic orbit falls into both Jacobi stable and Jacobi unstable regions. It is shown that we might witness chaotic behavior of the system before the trajectories enter a neighborhood of the equilibrium point. It is hoped that the investigation of this paper can contribute to better understand and study the complex chaotic system with stable equilibria.</description><subject>Chaos theory</subject><subject>chaotic system</subject><subject>dynamics at infinity</subject><subject>Jacobi analysis</subject><subject>Liapunov exponents</subject><subject>Orbital stability</subject><subject>Orbits</subject><subject>stable equilibrium</subject><issn>0170-4214</issn><issn>1099-1476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp10FFLwzAQB_AgCs4p-BECvvjSeZd0bfM4hk5l0xd9DkmWuoy22ZLW0W9v53wVDu7gftzBn5BbhAkCsIe6VpMsQ3FGRghCJJjm2TkZAeaQpAzTS3IV4xYACkQ2Iq9v9kBdE93Xpo3D0HqqqNko3zpDYx9bW9ODazfUN1U_rJa92nWN_6axVbqy1O47VzkdXFdfk4tSVdHe_PUx-Xx6_Jg_J8v3xct8tkwME1wkmZiuFdfWKNC5ZmWp9VoXrLRMpBlwVEPla7SGYaGAZRy5BmEEcKFZwRkfk7vT3V3w-87GVm59F5rhpWQpF1PBp3BU9ydlgo8x2FLugqtV6CWCPCYlh6TkMamBJid6cJXt_3VytZr9-h_7AGl2</recordid><startdate>202010</startdate><enddate>202010</enddate><creator>Chen, Biyu</creator><creator>Liu, Yongjian</creator><creator>Wei, Zhouchao</creator><creator>Feng, Chunsheng</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><orcidid>https://orcid.org/0000-0002-9500-0606</orcidid><orcidid>https://orcid.org/0000-0002-0806-1671</orcidid><orcidid>https://orcid.org/0000-0001-6981-748X</orcidid></search><sort><creationdate>202010</creationdate><title>New insights into a chaotic system with only a Lyapunov stable equilibrium</title><author>Chen, Biyu ; Liu, Yongjian ; Wei, Zhouchao ; Feng, Chunsheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2939-695da3beca0b7b2ffbbdb82fe2946031a31a7d1ec218a026313b09c9039b28323</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Chaos theory</topic><topic>chaotic system</topic><topic>dynamics at infinity</topic><topic>Jacobi analysis</topic><topic>Liapunov exponents</topic><topic>Orbital stability</topic><topic>Orbits</topic><topic>stable equilibrium</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Biyu</creatorcontrib><creatorcontrib>Liu, Yongjian</creatorcontrib><creatorcontrib>Wei, Zhouchao</creatorcontrib><creatorcontrib>Feng, Chunsheng</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><jtitle>Mathematical methods in the applied sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Biyu</au><au>Liu, Yongjian</au><au>Wei, Zhouchao</au><au>Feng, Chunsheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>New insights into a chaotic system with only a Lyapunov stable equilibrium</atitle><jtitle>Mathematical methods in the applied sciences</jtitle><date>2020-10</date><risdate>2020</risdate><volume>43</volume><issue>15</issue><spage>9262</spage><epage>9279</epage><pages>9262-9279</pages><issn>0170-4214</issn><eissn>1099-1476</eissn><abstract>This paper gives some new insights into a chaotic system. The considered system has only one Lyapunov stable equilibrium and positive Lyapunov exponent in some certain parameter range, which means there coexists chaotic attractors and Lyapunov stable equibirium in system. First, from the perspective of analyzing the global structure of the system, based on the Poincaré compactification technique, the complete description of its dynamical behavior on the sphere at infinity is presented. The obtaining results show that its global dynamical behavior is very complex. Second, from a geometric perspective, the Jacobi stability of the system is investigated, including the unique equilibrium and a periodic orbit. Interestingly, we find that the unique Lyapunov stable equilibrium is always Jacobi unstable, a Lyapunov stable periodic orbit falls into both Jacobi stable and Jacobi unstable regions. It is shown that we might witness chaotic behavior of the system before the trajectories enter a neighborhood of the equilibrium point. It is hoped that the investigation of this paper can contribute to better understand and study the complex chaotic system with stable equilibria.</abstract><cop>Freiburg</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/mma.6619</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0002-9500-0606</orcidid><orcidid>https://orcid.org/0000-0002-0806-1671</orcidid><orcidid>https://orcid.org/0000-0001-6981-748X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0170-4214
ispartof Mathematical methods in the applied sciences, 2020-10, Vol.43 (15), p.9262-9279
issn 0170-4214
1099-1476
language eng
recordid cdi_proquest_journals_2439593502
source Wiley Online Library Journals Frontfile Complete
subjects Chaos theory
chaotic system
dynamics at infinity
Jacobi analysis
Liapunov exponents
Orbital stability
Orbits
stable equilibrium
title New insights into a chaotic system with only a Lyapunov stable equilibrium
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T08%3A00%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=New%20insights%20into%20a%20chaotic%20system%20with%20only%20a%20Lyapunov%20stable%20equilibrium&rft.jtitle=Mathematical%20methods%20in%20the%20applied%20sciences&rft.au=Chen,%20Biyu&rft.date=2020-10&rft.volume=43&rft.issue=15&rft.spage=9262&rft.epage=9279&rft.pages=9262-9279&rft.issn=0170-4214&rft.eissn=1099-1476&rft_id=info:doi/10.1002/mma.6619&rft_dat=%3Cproquest_cross%3E2439593502%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2439593502&rft_id=info:pmid/&rfr_iscdi=true