Finite element analysis of parabolic integro‐differential equations of Kirchhoff type

The aim of this paper is to study parabolic integro‐differential equations of Kirchhoff type. We prove the existence and uniqueness of the solution for this problem via Galerkin method. Semidiscrete formulation for this problem is presented using conforming finite element method. As a consequence of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical methods in the applied sciences 2020-10, Vol.43 (15), p.9129-9150
Hauptverfasser: Kumar, Lalit, Sista, Sivaji Ganesh, Sreenadh, Konijeti
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 9150
container_issue 15
container_start_page 9129
container_title Mathematical methods in the applied sciences
container_volume 43
creator Kumar, Lalit
Sista, Sivaji Ganesh
Sreenadh, Konijeti
description The aim of this paper is to study parabolic integro‐differential equations of Kirchhoff type. We prove the existence and uniqueness of the solution for this problem via Galerkin method. Semidiscrete formulation for this problem is presented using conforming finite element method. As a consequence of the Ritz–Volterra projection, we derive error estimates for both semidiscrete solution and its time derivative. To find the numerical solution of this class of equations, we develop two different types of numerical schemes, which are based on backward Euler–Galerkin method and Crank–Nicolson–Galerkin method. A priori bounds and convergence estimates in spatial as well as temporal direction of the proposed schemes are established. Finally, we conclude this work by implementing some numerical experiments to confirm our theoretical results.
doi_str_mv 10.1002/mma.6607
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2439592258</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2439592258</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2937-3d32de2c76ba0142e4f24564f0b13a3e2ffe209ff1d679673efc582d5cd093883</originalsourceid><addsrcrecordid>eNp10L1OwzAQwHELgUQpSDxCJBaWlPNHPjxWFQVEKxYQo-UmZ-oqiVM7FcrGI_CMPAlpy8p0y093uj8h1xQmFIDd1bWepClkJ2REQcqYiiw9JSOgGcSCUXFOLkLYAEBOKRuR97ltbIcRVlhj00W60VUfbIiciVrt9cpVtohs0-GHdz9f36U1Bv0gra4i3O50Z11z0M_WF-u1Mybq-hYvyZnRVcCrvzkmb_P719ljvHh5eJpNF3HBJM9iXnJWIiuydKWBCobCMJGkwsCKcs2RDdcYSGNomWYyzTiaIslZmRQlSJ7nfExujntb77Y7DJ3auJ0fngiKCS4TyViyV7dHVXgXgkejWm9r7XtFQe2zqSGb2mcbaHykn7bC_l-nlsvpwf8C6MJvrw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2439592258</pqid></control><display><type>article</type><title>Finite element analysis of parabolic integro‐differential equations of Kirchhoff type</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Kumar, Lalit ; Sista, Sivaji Ganesh ; Sreenadh, Konijeti</creator><creatorcontrib>Kumar, Lalit ; Sista, Sivaji Ganesh ; Sreenadh, Konijeti</creatorcontrib><description>The aim of this paper is to study parabolic integro‐differential equations of Kirchhoff type. We prove the existence and uniqueness of the solution for this problem via Galerkin method. Semidiscrete formulation for this problem is presented using conforming finite element method. As a consequence of the Ritz–Volterra projection, we derive error estimates for both semidiscrete solution and its time derivative. To find the numerical solution of this class of equations, we develop two different types of numerical schemes, which are based on backward Euler–Galerkin method and Crank–Nicolson–Galerkin method. A priori bounds and convergence estimates in spatial as well as temporal direction of the proposed schemes are established. Finally, we conclude this work by implementing some numerical experiments to confirm our theoretical results.</description><identifier>ISSN: 0170-4214</identifier><identifier>EISSN: 1099-1476</identifier><identifier>DOI: 10.1002/mma.6607</identifier><language>eng</language><publisher>Freiburg: Wiley Subscription Services, Inc</publisher><subject>Differential equations ; Finite element method ; Galerkin method ; integro‐differential equations ; linearized backward euler method ; linearized Crank–Nicolson method ; Mathematical analysis</subject><ispartof>Mathematical methods in the applied sciences, 2020-10, Vol.43 (15), p.9129-9150</ispartof><rights>2020 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2937-3d32de2c76ba0142e4f24564f0b13a3e2ffe209ff1d679673efc582d5cd093883</citedby><cites>FETCH-LOGICAL-c2937-3d32de2c76ba0142e4f24564f0b13a3e2ffe209ff1d679673efc582d5cd093883</cites><orcidid>0000-0001-7953-7887</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fmma.6607$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fmma.6607$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Kumar, Lalit</creatorcontrib><creatorcontrib>Sista, Sivaji Ganesh</creatorcontrib><creatorcontrib>Sreenadh, Konijeti</creatorcontrib><title>Finite element analysis of parabolic integro‐differential equations of Kirchhoff type</title><title>Mathematical methods in the applied sciences</title><description>The aim of this paper is to study parabolic integro‐differential equations of Kirchhoff type. We prove the existence and uniqueness of the solution for this problem via Galerkin method. Semidiscrete formulation for this problem is presented using conforming finite element method. As a consequence of the Ritz–Volterra projection, we derive error estimates for both semidiscrete solution and its time derivative. To find the numerical solution of this class of equations, we develop two different types of numerical schemes, which are based on backward Euler–Galerkin method and Crank–Nicolson–Galerkin method. A priori bounds and convergence estimates in spatial as well as temporal direction of the proposed schemes are established. Finally, we conclude this work by implementing some numerical experiments to confirm our theoretical results.</description><subject>Differential equations</subject><subject>Finite element method</subject><subject>Galerkin method</subject><subject>integro‐differential equations</subject><subject>linearized backward euler method</subject><subject>linearized Crank–Nicolson method</subject><subject>Mathematical analysis</subject><issn>0170-4214</issn><issn>1099-1476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp10L1OwzAQwHELgUQpSDxCJBaWlPNHPjxWFQVEKxYQo-UmZ-oqiVM7FcrGI_CMPAlpy8p0y093uj8h1xQmFIDd1bWepClkJ2REQcqYiiw9JSOgGcSCUXFOLkLYAEBOKRuR97ltbIcRVlhj00W60VUfbIiciVrt9cpVtohs0-GHdz9f36U1Bv0gra4i3O50Z11z0M_WF-u1Mybq-hYvyZnRVcCrvzkmb_P719ljvHh5eJpNF3HBJM9iXnJWIiuydKWBCobCMJGkwsCKcs2RDdcYSGNomWYyzTiaIslZmRQlSJ7nfExujntb77Y7DJ3auJ0fngiKCS4TyViyV7dHVXgXgkejWm9r7XtFQe2zqSGb2mcbaHykn7bC_l-nlsvpwf8C6MJvrw</recordid><startdate>202010</startdate><enddate>202010</enddate><creator>Kumar, Lalit</creator><creator>Sista, Sivaji Ganesh</creator><creator>Sreenadh, Konijeti</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><orcidid>https://orcid.org/0000-0001-7953-7887</orcidid></search><sort><creationdate>202010</creationdate><title>Finite element analysis of parabolic integro‐differential equations of Kirchhoff type</title><author>Kumar, Lalit ; Sista, Sivaji Ganesh ; Sreenadh, Konijeti</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2937-3d32de2c76ba0142e4f24564f0b13a3e2ffe209ff1d679673efc582d5cd093883</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Differential equations</topic><topic>Finite element method</topic><topic>Galerkin method</topic><topic>integro‐differential equations</topic><topic>linearized backward euler method</topic><topic>linearized Crank–Nicolson method</topic><topic>Mathematical analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kumar, Lalit</creatorcontrib><creatorcontrib>Sista, Sivaji Ganesh</creatorcontrib><creatorcontrib>Sreenadh, Konijeti</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><jtitle>Mathematical methods in the applied sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kumar, Lalit</au><au>Sista, Sivaji Ganesh</au><au>Sreenadh, Konijeti</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Finite element analysis of parabolic integro‐differential equations of Kirchhoff type</atitle><jtitle>Mathematical methods in the applied sciences</jtitle><date>2020-10</date><risdate>2020</risdate><volume>43</volume><issue>15</issue><spage>9129</spage><epage>9150</epage><pages>9129-9150</pages><issn>0170-4214</issn><eissn>1099-1476</eissn><abstract>The aim of this paper is to study parabolic integro‐differential equations of Kirchhoff type. We prove the existence and uniqueness of the solution for this problem via Galerkin method. Semidiscrete formulation for this problem is presented using conforming finite element method. As a consequence of the Ritz–Volterra projection, we derive error estimates for both semidiscrete solution and its time derivative. To find the numerical solution of this class of equations, we develop two different types of numerical schemes, which are based on backward Euler–Galerkin method and Crank–Nicolson–Galerkin method. A priori bounds and convergence estimates in spatial as well as temporal direction of the proposed schemes are established. Finally, we conclude this work by implementing some numerical experiments to confirm our theoretical results.</abstract><cop>Freiburg</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/mma.6607</doi><tpages>22</tpages><orcidid>https://orcid.org/0000-0001-7953-7887</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0170-4214
ispartof Mathematical methods in the applied sciences, 2020-10, Vol.43 (15), p.9129-9150
issn 0170-4214
1099-1476
language eng
recordid cdi_proquest_journals_2439592258
source Wiley Online Library Journals Frontfile Complete
subjects Differential equations
Finite element method
Galerkin method
integro‐differential equations
linearized backward euler method
linearized Crank–Nicolson method
Mathematical analysis
title Finite element analysis of parabolic integro‐differential equations of Kirchhoff type
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T12%3A58%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Finite%20element%20analysis%20of%20parabolic%20integro%E2%80%90differential%20equations%20of%20Kirchhoff%20type&rft.jtitle=Mathematical%20methods%20in%20the%20applied%20sciences&rft.au=Kumar,%20Lalit&rft.date=2020-10&rft.volume=43&rft.issue=15&rft.spage=9129&rft.epage=9150&rft.pages=9129-9150&rft.issn=0170-4214&rft.eissn=1099-1476&rft_id=info:doi/10.1002/mma.6607&rft_dat=%3Cproquest_cross%3E2439592258%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2439592258&rft_id=info:pmid/&rfr_iscdi=true