Finite element analysis of parabolic integro‐differential equations of Kirchhoff type
The aim of this paper is to study parabolic integro‐differential equations of Kirchhoff type. We prove the existence and uniqueness of the solution for this problem via Galerkin method. Semidiscrete formulation for this problem is presented using conforming finite element method. As a consequence of...
Gespeichert in:
Veröffentlicht in: | Mathematical methods in the applied sciences 2020-10, Vol.43 (15), p.9129-9150 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 9150 |
---|---|
container_issue | 15 |
container_start_page | 9129 |
container_title | Mathematical methods in the applied sciences |
container_volume | 43 |
creator | Kumar, Lalit Sista, Sivaji Ganesh Sreenadh, Konijeti |
description | The aim of this paper is to study parabolic integro‐differential equations of Kirchhoff type. We prove the existence and uniqueness of the solution for this problem via Galerkin method. Semidiscrete formulation for this problem is presented using conforming finite element method. As a consequence of the Ritz–Volterra projection, we derive error estimates for both semidiscrete solution and its time derivative. To find the numerical solution of this class of equations, we develop two different types of numerical schemes, which are based on backward Euler–Galerkin method and Crank–Nicolson–Galerkin method. A priori bounds and convergence estimates in spatial as well as temporal direction of the proposed schemes are established. Finally, we conclude this work by implementing some numerical experiments to confirm our theoretical results. |
doi_str_mv | 10.1002/mma.6607 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2439592258</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2439592258</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2937-3d32de2c76ba0142e4f24564f0b13a3e2ffe209ff1d679673efc582d5cd093883</originalsourceid><addsrcrecordid>eNp10L1OwzAQwHELgUQpSDxCJBaWlPNHPjxWFQVEKxYQo-UmZ-oqiVM7FcrGI_CMPAlpy8p0y093uj8h1xQmFIDd1bWepClkJ2REQcqYiiw9JSOgGcSCUXFOLkLYAEBOKRuR97ltbIcRVlhj00W60VUfbIiciVrt9cpVtohs0-GHdz9f36U1Bv0gra4i3O50Z11z0M_WF-u1Mybq-hYvyZnRVcCrvzkmb_P719ljvHh5eJpNF3HBJM9iXnJWIiuydKWBCobCMJGkwsCKcs2RDdcYSGNomWYyzTiaIslZmRQlSJ7nfExujntb77Y7DJ3auJ0fngiKCS4TyViyV7dHVXgXgkejWm9r7XtFQe2zqSGb2mcbaHykn7bC_l-nlsvpwf8C6MJvrw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2439592258</pqid></control><display><type>article</type><title>Finite element analysis of parabolic integro‐differential equations of Kirchhoff type</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Kumar, Lalit ; Sista, Sivaji Ganesh ; Sreenadh, Konijeti</creator><creatorcontrib>Kumar, Lalit ; Sista, Sivaji Ganesh ; Sreenadh, Konijeti</creatorcontrib><description>The aim of this paper is to study parabolic integro‐differential equations of Kirchhoff type. We prove the existence and uniqueness of the solution for this problem via Galerkin method. Semidiscrete formulation for this problem is presented using conforming finite element method. As a consequence of the Ritz–Volterra projection, we derive error estimates for both semidiscrete solution and its time derivative. To find the numerical solution of this class of equations, we develop two different types of numerical schemes, which are based on backward Euler–Galerkin method and Crank–Nicolson–Galerkin method. A priori bounds and convergence estimates in spatial as well as temporal direction of the proposed schemes are established. Finally, we conclude this work by implementing some numerical experiments to confirm our theoretical results.</description><identifier>ISSN: 0170-4214</identifier><identifier>EISSN: 1099-1476</identifier><identifier>DOI: 10.1002/mma.6607</identifier><language>eng</language><publisher>Freiburg: Wiley Subscription Services, Inc</publisher><subject>Differential equations ; Finite element method ; Galerkin method ; integro‐differential equations ; linearized backward euler method ; linearized Crank–Nicolson method ; Mathematical analysis</subject><ispartof>Mathematical methods in the applied sciences, 2020-10, Vol.43 (15), p.9129-9150</ispartof><rights>2020 John Wiley & Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2937-3d32de2c76ba0142e4f24564f0b13a3e2ffe209ff1d679673efc582d5cd093883</citedby><cites>FETCH-LOGICAL-c2937-3d32de2c76ba0142e4f24564f0b13a3e2ffe209ff1d679673efc582d5cd093883</cites><orcidid>0000-0001-7953-7887</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fmma.6607$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fmma.6607$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Kumar, Lalit</creatorcontrib><creatorcontrib>Sista, Sivaji Ganesh</creatorcontrib><creatorcontrib>Sreenadh, Konijeti</creatorcontrib><title>Finite element analysis of parabolic integro‐differential equations of Kirchhoff type</title><title>Mathematical methods in the applied sciences</title><description>The aim of this paper is to study parabolic integro‐differential equations of Kirchhoff type. We prove the existence and uniqueness of the solution for this problem via Galerkin method. Semidiscrete formulation for this problem is presented using conforming finite element method. As a consequence of the Ritz–Volterra projection, we derive error estimates for both semidiscrete solution and its time derivative. To find the numerical solution of this class of equations, we develop two different types of numerical schemes, which are based on backward Euler–Galerkin method and Crank–Nicolson–Galerkin method. A priori bounds and convergence estimates in spatial as well as temporal direction of the proposed schemes are established. Finally, we conclude this work by implementing some numerical experiments to confirm our theoretical results.</description><subject>Differential equations</subject><subject>Finite element method</subject><subject>Galerkin method</subject><subject>integro‐differential equations</subject><subject>linearized backward euler method</subject><subject>linearized Crank–Nicolson method</subject><subject>Mathematical analysis</subject><issn>0170-4214</issn><issn>1099-1476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp10L1OwzAQwHELgUQpSDxCJBaWlPNHPjxWFQVEKxYQo-UmZ-oqiVM7FcrGI_CMPAlpy8p0y093uj8h1xQmFIDd1bWepClkJ2REQcqYiiw9JSOgGcSCUXFOLkLYAEBOKRuR97ltbIcRVlhj00W60VUfbIiciVrt9cpVtohs0-GHdz9f36U1Bv0gra4i3O50Z11z0M_WF-u1Mybq-hYvyZnRVcCrvzkmb_P719ljvHh5eJpNF3HBJM9iXnJWIiuydKWBCobCMJGkwsCKcs2RDdcYSGNomWYyzTiaIslZmRQlSJ7nfExujntb77Y7DJ3auJ0fngiKCS4TyViyV7dHVXgXgkejWm9r7XtFQe2zqSGb2mcbaHykn7bC_l-nlsvpwf8C6MJvrw</recordid><startdate>202010</startdate><enddate>202010</enddate><creator>Kumar, Lalit</creator><creator>Sista, Sivaji Ganesh</creator><creator>Sreenadh, Konijeti</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><orcidid>https://orcid.org/0000-0001-7953-7887</orcidid></search><sort><creationdate>202010</creationdate><title>Finite element analysis of parabolic integro‐differential equations of Kirchhoff type</title><author>Kumar, Lalit ; Sista, Sivaji Ganesh ; Sreenadh, Konijeti</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2937-3d32de2c76ba0142e4f24564f0b13a3e2ffe209ff1d679673efc582d5cd093883</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Differential equations</topic><topic>Finite element method</topic><topic>Galerkin method</topic><topic>integro‐differential equations</topic><topic>linearized backward euler method</topic><topic>linearized Crank–Nicolson method</topic><topic>Mathematical analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kumar, Lalit</creatorcontrib><creatorcontrib>Sista, Sivaji Ganesh</creatorcontrib><creatorcontrib>Sreenadh, Konijeti</creatorcontrib><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><jtitle>Mathematical methods in the applied sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kumar, Lalit</au><au>Sista, Sivaji Ganesh</au><au>Sreenadh, Konijeti</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Finite element analysis of parabolic integro‐differential equations of Kirchhoff type</atitle><jtitle>Mathematical methods in the applied sciences</jtitle><date>2020-10</date><risdate>2020</risdate><volume>43</volume><issue>15</issue><spage>9129</spage><epage>9150</epage><pages>9129-9150</pages><issn>0170-4214</issn><eissn>1099-1476</eissn><abstract>The aim of this paper is to study parabolic integro‐differential equations of Kirchhoff type. We prove the existence and uniqueness of the solution for this problem via Galerkin method. Semidiscrete formulation for this problem is presented using conforming finite element method. As a consequence of the Ritz–Volterra projection, we derive error estimates for both semidiscrete solution and its time derivative. To find the numerical solution of this class of equations, we develop two different types of numerical schemes, which are based on backward Euler–Galerkin method and Crank–Nicolson–Galerkin method. A priori bounds and convergence estimates in spatial as well as temporal direction of the proposed schemes are established. Finally, we conclude this work by implementing some numerical experiments to confirm our theoretical results.</abstract><cop>Freiburg</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/mma.6607</doi><tpages>22</tpages><orcidid>https://orcid.org/0000-0001-7953-7887</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0170-4214 |
ispartof | Mathematical methods in the applied sciences, 2020-10, Vol.43 (15), p.9129-9150 |
issn | 0170-4214 1099-1476 |
language | eng |
recordid | cdi_proquest_journals_2439592258 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Differential equations Finite element method Galerkin method integro‐differential equations linearized backward euler method linearized Crank–Nicolson method Mathematical analysis |
title | Finite element analysis of parabolic integro‐differential equations of Kirchhoff type |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T12%3A58%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Finite%20element%20analysis%20of%20parabolic%20integro%E2%80%90differential%20equations%20of%20Kirchhoff%20type&rft.jtitle=Mathematical%20methods%20in%20the%20applied%20sciences&rft.au=Kumar,%20Lalit&rft.date=2020-10&rft.volume=43&rft.issue=15&rft.spage=9129&rft.epage=9150&rft.pages=9129-9150&rft.issn=0170-4214&rft.eissn=1099-1476&rft_id=info:doi/10.1002/mma.6607&rft_dat=%3Cproquest_cross%3E2439592258%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2439592258&rft_id=info:pmid/&rfr_iscdi=true |