Phase retrieval of finite Blaschke projection

Phase retrieval by Fourier measurements is a classical application in coherent diffraction imaging, and the modified Blaschke products (MBPs) are the generalization of linear Fourier atoms. Motivated by this, we investigate the phase retrieval modeled as to reconstruct P(f)=∑k=0∞⟨f,B{a0,a1,…,ak}⟩B{a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical methods in the applied sciences 2020-10, Vol.43 (15), p.9090-9101
Hauptverfasser: Li, Youfa, Zhou, Chunxu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 9101
container_issue 15
container_start_page 9090
container_title Mathematical methods in the applied sciences
container_volume 43
creator Li, Youfa
Zhou, Chunxu
description Phase retrieval by Fourier measurements is a classical application in coherent diffraction imaging, and the modified Blaschke products (MBPs) are the generalization of linear Fourier atoms. Motivated by this, we investigate the phase retrieval modeled as to reconstruct P(f)=∑k=0∞⟨f,B{a0,a1,…,ak}⟩B{a0,a1,…,ak} by the intensity measurements {|⟨f,Bk1⟩|,|⟨f,Bk2⟩|,|⟨f,Bk3⟩|:k≥1}, where f lies in Hardy space ℋ2(D) such that f(a0)=0, B{a0,a1,…,ak} and Bki are all the finite MBPs. We establish the condition on Bki such that P(f) can be determined, up to a unimodular scalar, by the above measurements. A byproduct of our result is that the instantaneous frequency of the target can be exactly reconstructed by the above intensity measurements. Moreover, a recursive algorithm for the phase retrieval is established. Numerical simulations are conducted to verify our result.
doi_str_mv 10.1002/mma.6603
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2439591847</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2439591847</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2933-6cd9d77e531f6b5431e8a302ae15dfe802c7966a31c025479c46dedbf33e97313</originalsourceid><addsrcrecordid>eNp10DFPwzAQhmELgUQpSPyESCwsKXe2Y8djqSggtYIBZst1zmpK2hQ7BfXfk1JWplse3Se9jF0jjBCA363XbqQUiBM2QDAmR6nVKRsAasglR3nOLlJaAUCJyAcsf126RFmkLtb05ZqsDVmoN3VH2X3jkl9-ULaN7Yp8V7ebS3YWXJPo6u8O2fv04W3ylM9eHp8n41nuuREiV74yldZUCAxqUUiBVDoB3BEWVaASuNdGKSfQAy-kNl6qiqpFEIKMFiiG7Ob4t5_-3FHq7KrdxU0_abkUpjBYSt2r26PysU0pUrDbWK9d3FsEe4hh-xj2EKOn-ZF-1w3t_3V2Ph__-h_wtl4r</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2439591847</pqid></control><display><type>article</type><title>Phase retrieval of finite Blaschke projection</title><source>Access via Wiley Online Library</source><creator>Li, Youfa ; Zhou, Chunxu</creator><creatorcontrib>Li, Youfa ; Zhou, Chunxu</creatorcontrib><description>Phase retrieval by Fourier measurements is a classical application in coherent diffraction imaging, and the modified Blaschke products (MBPs) are the generalization of linear Fourier atoms. Motivated by this, we investigate the phase retrieval modeled as to reconstruct P(f)=∑k=0∞⟨f,B{a0,a1,…,ak}⟩B{a0,a1,…,ak} by the intensity measurements {|⟨f,Bk1⟩|,|⟨f,Bk2⟩|,|⟨f,Bk3⟩|:k≥1}, where f lies in Hardy space ℋ2(D) such that f(a0)=0, B{a0,a1,…,ak} and Bki are all the finite MBPs. We establish the condition on Bki such that P(f) can be determined, up to a unimodular scalar, by the above measurements. A byproduct of our result is that the instantaneous frequency of the target can be exactly reconstructed by the above intensity measurements. Moreover, a recursive algorithm for the phase retrieval is established. Numerical simulations are conducted to verify our result.</description><identifier>ISSN: 0170-4214</identifier><identifier>EISSN: 1099-1476</identifier><identifier>DOI: 10.1002/mma.6603</identifier><language>eng</language><publisher>Freiburg: Wiley Subscription Services, Inc</publisher><subject>Algorithms ; Blaschke product measurement ; Computer simulation ; Hardy space ; instantaneous frequency ; Mathematical models ; Phase retrieval ; recursive reconstruction ; uniqueness</subject><ispartof>Mathematical methods in the applied sciences, 2020-10, Vol.43 (15), p.9090-9101</ispartof><rights>2020 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2933-6cd9d77e531f6b5431e8a302ae15dfe802c7966a31c025479c46dedbf33e97313</citedby><cites>FETCH-LOGICAL-c2933-6cd9d77e531f6b5431e8a302ae15dfe802c7966a31c025479c46dedbf33e97313</cites><orcidid>0000-0003-2122-7469</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fmma.6603$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fmma.6603$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Li, Youfa</creatorcontrib><creatorcontrib>Zhou, Chunxu</creatorcontrib><title>Phase retrieval of finite Blaschke projection</title><title>Mathematical methods in the applied sciences</title><description>Phase retrieval by Fourier measurements is a classical application in coherent diffraction imaging, and the modified Blaschke products (MBPs) are the generalization of linear Fourier atoms. Motivated by this, we investigate the phase retrieval modeled as to reconstruct P(f)=∑k=0∞⟨f,B{a0,a1,…,ak}⟩B{a0,a1,…,ak} by the intensity measurements {|⟨f,Bk1⟩|,|⟨f,Bk2⟩|,|⟨f,Bk3⟩|:k≥1}, where f lies in Hardy space ℋ2(D) such that f(a0)=0, B{a0,a1,…,ak} and Bki are all the finite MBPs. We establish the condition on Bki such that P(f) can be determined, up to a unimodular scalar, by the above measurements. A byproduct of our result is that the instantaneous frequency of the target can be exactly reconstructed by the above intensity measurements. Moreover, a recursive algorithm for the phase retrieval is established. Numerical simulations are conducted to verify our result.</description><subject>Algorithms</subject><subject>Blaschke product measurement</subject><subject>Computer simulation</subject><subject>Hardy space</subject><subject>instantaneous frequency</subject><subject>Mathematical models</subject><subject>Phase retrieval</subject><subject>recursive reconstruction</subject><subject>uniqueness</subject><issn>0170-4214</issn><issn>1099-1476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp10DFPwzAQhmELgUQpSPyESCwsKXe2Y8djqSggtYIBZst1zmpK2hQ7BfXfk1JWplse3Se9jF0jjBCA363XbqQUiBM2QDAmR6nVKRsAasglR3nOLlJaAUCJyAcsf126RFmkLtb05ZqsDVmoN3VH2X3jkl9-ULaN7Yp8V7ebS3YWXJPo6u8O2fv04W3ylM9eHp8n41nuuREiV74yldZUCAxqUUiBVDoB3BEWVaASuNdGKSfQAy-kNl6qiqpFEIKMFiiG7Ob4t5_-3FHq7KrdxU0_abkUpjBYSt2r26PysU0pUrDbWK9d3FsEe4hh-xj2EKOn-ZF-1w3t_3V2Ph__-h_wtl4r</recordid><startdate>202010</startdate><enddate>202010</enddate><creator>Li, Youfa</creator><creator>Zhou, Chunxu</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><orcidid>https://orcid.org/0000-0003-2122-7469</orcidid></search><sort><creationdate>202010</creationdate><title>Phase retrieval of finite Blaschke projection</title><author>Li, Youfa ; Zhou, Chunxu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2933-6cd9d77e531f6b5431e8a302ae15dfe802c7966a31c025479c46dedbf33e97313</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Blaschke product measurement</topic><topic>Computer simulation</topic><topic>Hardy space</topic><topic>instantaneous frequency</topic><topic>Mathematical models</topic><topic>Phase retrieval</topic><topic>recursive reconstruction</topic><topic>uniqueness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Youfa</creatorcontrib><creatorcontrib>Zhou, Chunxu</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><jtitle>Mathematical methods in the applied sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Youfa</au><au>Zhou, Chunxu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Phase retrieval of finite Blaschke projection</atitle><jtitle>Mathematical methods in the applied sciences</jtitle><date>2020-10</date><risdate>2020</risdate><volume>43</volume><issue>15</issue><spage>9090</spage><epage>9101</epage><pages>9090-9101</pages><issn>0170-4214</issn><eissn>1099-1476</eissn><abstract>Phase retrieval by Fourier measurements is a classical application in coherent diffraction imaging, and the modified Blaschke products (MBPs) are the generalization of linear Fourier atoms. Motivated by this, we investigate the phase retrieval modeled as to reconstruct P(f)=∑k=0∞⟨f,B{a0,a1,…,ak}⟩B{a0,a1,…,ak} by the intensity measurements {|⟨f,Bk1⟩|,|⟨f,Bk2⟩|,|⟨f,Bk3⟩|:k≥1}, where f lies in Hardy space ℋ2(D) such that f(a0)=0, B{a0,a1,…,ak} and Bki are all the finite MBPs. We establish the condition on Bki such that P(f) can be determined, up to a unimodular scalar, by the above measurements. A byproduct of our result is that the instantaneous frequency of the target can be exactly reconstructed by the above intensity measurements. Moreover, a recursive algorithm for the phase retrieval is established. Numerical simulations are conducted to verify our result.</abstract><cop>Freiburg</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/mma.6603</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-2122-7469</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0170-4214
ispartof Mathematical methods in the applied sciences, 2020-10, Vol.43 (15), p.9090-9101
issn 0170-4214
1099-1476
language eng
recordid cdi_proquest_journals_2439591847
source Access via Wiley Online Library
subjects Algorithms
Blaschke product measurement
Computer simulation
Hardy space
instantaneous frequency
Mathematical models
Phase retrieval
recursive reconstruction
uniqueness
title Phase retrieval of finite Blaschke projection
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T20%3A30%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Phase%20retrieval%20of%20finite%20Blaschke%20projection&rft.jtitle=Mathematical%20methods%20in%20the%20applied%20sciences&rft.au=Li,%20Youfa&rft.date=2020-10&rft.volume=43&rft.issue=15&rft.spage=9090&rft.epage=9101&rft.pages=9090-9101&rft.issn=0170-4214&rft.eissn=1099-1476&rft_id=info:doi/10.1002/mma.6603&rft_dat=%3Cproquest_cross%3E2439591847%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2439591847&rft_id=info:pmid/&rfr_iscdi=true