Phase retrieval of finite Blaschke projection
Phase retrieval by Fourier measurements is a classical application in coherent diffraction imaging, and the modified Blaschke products (MBPs) are the generalization of linear Fourier atoms. Motivated by this, we investigate the phase retrieval modeled as to reconstruct P(f)=∑k=0∞⟨f,B{a0,a1,…,ak}⟩B{a...
Gespeichert in:
Veröffentlicht in: | Mathematical methods in the applied sciences 2020-10, Vol.43 (15), p.9090-9101 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 9101 |
---|---|
container_issue | 15 |
container_start_page | 9090 |
container_title | Mathematical methods in the applied sciences |
container_volume | 43 |
creator | Li, Youfa Zhou, Chunxu |
description | Phase retrieval by Fourier measurements is a classical application in coherent diffraction imaging, and the modified Blaschke products (MBPs) are the generalization of linear Fourier atoms. Motivated by this, we investigate the phase retrieval modeled as to reconstruct
P(f)=∑k=0∞⟨f,B{a0,a1,…,ak}⟩B{a0,a1,…,ak} by the intensity measurements
{|⟨f,Bk1⟩|,|⟨f,Bk2⟩|,|⟨f,Bk3⟩|:k≥1}, where f lies in Hardy space
ℋ2(D) such that f(a0)=0,
B{a0,a1,…,ak} and
Bki are all the finite MBPs. We establish the condition on
Bki such that
P(f) can be determined, up to a unimodular scalar, by the above measurements. A byproduct of our result is that the instantaneous frequency of the target can be exactly reconstructed by the above intensity measurements. Moreover, a recursive algorithm for the phase retrieval is established. Numerical simulations are conducted to verify our result. |
doi_str_mv | 10.1002/mma.6603 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2439591847</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2439591847</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2933-6cd9d77e531f6b5431e8a302ae15dfe802c7966a31c025479c46dedbf33e97313</originalsourceid><addsrcrecordid>eNp10DFPwzAQhmELgUQpSPyESCwsKXe2Y8djqSggtYIBZst1zmpK2hQ7BfXfk1JWplse3Se9jF0jjBCA363XbqQUiBM2QDAmR6nVKRsAasglR3nOLlJaAUCJyAcsf126RFmkLtb05ZqsDVmoN3VH2X3jkl9-ULaN7Yp8V7ebS3YWXJPo6u8O2fv04W3ylM9eHp8n41nuuREiV74yldZUCAxqUUiBVDoB3BEWVaASuNdGKSfQAy-kNl6qiqpFEIKMFiiG7Ob4t5_-3FHq7KrdxU0_abkUpjBYSt2r26PysU0pUrDbWK9d3FsEe4hh-xj2EKOn-ZF-1w3t_3V2Ph__-h_wtl4r</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2439591847</pqid></control><display><type>article</type><title>Phase retrieval of finite Blaschke projection</title><source>Access via Wiley Online Library</source><creator>Li, Youfa ; Zhou, Chunxu</creator><creatorcontrib>Li, Youfa ; Zhou, Chunxu</creatorcontrib><description>Phase retrieval by Fourier measurements is a classical application in coherent diffraction imaging, and the modified Blaschke products (MBPs) are the generalization of linear Fourier atoms. Motivated by this, we investigate the phase retrieval modeled as to reconstruct
P(f)=∑k=0∞⟨f,B{a0,a1,…,ak}⟩B{a0,a1,…,ak} by the intensity measurements
{|⟨f,Bk1⟩|,|⟨f,Bk2⟩|,|⟨f,Bk3⟩|:k≥1}, where f lies in Hardy space
ℋ2(D) such that f(a0)=0,
B{a0,a1,…,ak} and
Bki are all the finite MBPs. We establish the condition on
Bki such that
P(f) can be determined, up to a unimodular scalar, by the above measurements. A byproduct of our result is that the instantaneous frequency of the target can be exactly reconstructed by the above intensity measurements. Moreover, a recursive algorithm for the phase retrieval is established. Numerical simulations are conducted to verify our result.</description><identifier>ISSN: 0170-4214</identifier><identifier>EISSN: 1099-1476</identifier><identifier>DOI: 10.1002/mma.6603</identifier><language>eng</language><publisher>Freiburg: Wiley Subscription Services, Inc</publisher><subject>Algorithms ; Blaschke product measurement ; Computer simulation ; Hardy space ; instantaneous frequency ; Mathematical models ; Phase retrieval ; recursive reconstruction ; uniqueness</subject><ispartof>Mathematical methods in the applied sciences, 2020-10, Vol.43 (15), p.9090-9101</ispartof><rights>2020 John Wiley & Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2933-6cd9d77e531f6b5431e8a302ae15dfe802c7966a31c025479c46dedbf33e97313</citedby><cites>FETCH-LOGICAL-c2933-6cd9d77e531f6b5431e8a302ae15dfe802c7966a31c025479c46dedbf33e97313</cites><orcidid>0000-0003-2122-7469</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fmma.6603$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fmma.6603$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Li, Youfa</creatorcontrib><creatorcontrib>Zhou, Chunxu</creatorcontrib><title>Phase retrieval of finite Blaschke projection</title><title>Mathematical methods in the applied sciences</title><description>Phase retrieval by Fourier measurements is a classical application in coherent diffraction imaging, and the modified Blaschke products (MBPs) are the generalization of linear Fourier atoms. Motivated by this, we investigate the phase retrieval modeled as to reconstruct
P(f)=∑k=0∞⟨f,B{a0,a1,…,ak}⟩B{a0,a1,…,ak} by the intensity measurements
{|⟨f,Bk1⟩|,|⟨f,Bk2⟩|,|⟨f,Bk3⟩|:k≥1}, where f lies in Hardy space
ℋ2(D) such that f(a0)=0,
B{a0,a1,…,ak} and
Bki are all the finite MBPs. We establish the condition on
Bki such that
P(f) can be determined, up to a unimodular scalar, by the above measurements. A byproduct of our result is that the instantaneous frequency of the target can be exactly reconstructed by the above intensity measurements. Moreover, a recursive algorithm for the phase retrieval is established. Numerical simulations are conducted to verify our result.</description><subject>Algorithms</subject><subject>Blaschke product measurement</subject><subject>Computer simulation</subject><subject>Hardy space</subject><subject>instantaneous frequency</subject><subject>Mathematical models</subject><subject>Phase retrieval</subject><subject>recursive reconstruction</subject><subject>uniqueness</subject><issn>0170-4214</issn><issn>1099-1476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp10DFPwzAQhmELgUQpSPyESCwsKXe2Y8djqSggtYIBZst1zmpK2hQ7BfXfk1JWplse3Se9jF0jjBCA363XbqQUiBM2QDAmR6nVKRsAasglR3nOLlJaAUCJyAcsf126RFmkLtb05ZqsDVmoN3VH2X3jkl9-ULaN7Yp8V7ebS3YWXJPo6u8O2fv04W3ylM9eHp8n41nuuREiV74yldZUCAxqUUiBVDoB3BEWVaASuNdGKSfQAy-kNl6qiqpFEIKMFiiG7Ob4t5_-3FHq7KrdxU0_abkUpjBYSt2r26PysU0pUrDbWK9d3FsEe4hh-xj2EKOn-ZF-1w3t_3V2Ph__-h_wtl4r</recordid><startdate>202010</startdate><enddate>202010</enddate><creator>Li, Youfa</creator><creator>Zhou, Chunxu</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><orcidid>https://orcid.org/0000-0003-2122-7469</orcidid></search><sort><creationdate>202010</creationdate><title>Phase retrieval of finite Blaschke projection</title><author>Li, Youfa ; Zhou, Chunxu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2933-6cd9d77e531f6b5431e8a302ae15dfe802c7966a31c025479c46dedbf33e97313</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Blaschke product measurement</topic><topic>Computer simulation</topic><topic>Hardy space</topic><topic>instantaneous frequency</topic><topic>Mathematical models</topic><topic>Phase retrieval</topic><topic>recursive reconstruction</topic><topic>uniqueness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Youfa</creatorcontrib><creatorcontrib>Zhou, Chunxu</creatorcontrib><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><jtitle>Mathematical methods in the applied sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Youfa</au><au>Zhou, Chunxu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Phase retrieval of finite Blaschke projection</atitle><jtitle>Mathematical methods in the applied sciences</jtitle><date>2020-10</date><risdate>2020</risdate><volume>43</volume><issue>15</issue><spage>9090</spage><epage>9101</epage><pages>9090-9101</pages><issn>0170-4214</issn><eissn>1099-1476</eissn><abstract>Phase retrieval by Fourier measurements is a classical application in coherent diffraction imaging, and the modified Blaschke products (MBPs) are the generalization of linear Fourier atoms. Motivated by this, we investigate the phase retrieval modeled as to reconstruct
P(f)=∑k=0∞⟨f,B{a0,a1,…,ak}⟩B{a0,a1,…,ak} by the intensity measurements
{|⟨f,Bk1⟩|,|⟨f,Bk2⟩|,|⟨f,Bk3⟩|:k≥1}, where f lies in Hardy space
ℋ2(D) such that f(a0)=0,
B{a0,a1,…,ak} and
Bki are all the finite MBPs. We establish the condition on
Bki such that
P(f) can be determined, up to a unimodular scalar, by the above measurements. A byproduct of our result is that the instantaneous frequency of the target can be exactly reconstructed by the above intensity measurements. Moreover, a recursive algorithm for the phase retrieval is established. Numerical simulations are conducted to verify our result.</abstract><cop>Freiburg</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/mma.6603</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-2122-7469</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0170-4214 |
ispartof | Mathematical methods in the applied sciences, 2020-10, Vol.43 (15), p.9090-9101 |
issn | 0170-4214 1099-1476 |
language | eng |
recordid | cdi_proquest_journals_2439591847 |
source | Access via Wiley Online Library |
subjects | Algorithms Blaschke product measurement Computer simulation Hardy space instantaneous frequency Mathematical models Phase retrieval recursive reconstruction uniqueness |
title | Phase retrieval of finite Blaschke projection |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T20%3A30%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Phase%20retrieval%20of%20finite%20Blaschke%20projection&rft.jtitle=Mathematical%20methods%20in%20the%20applied%20sciences&rft.au=Li,%20Youfa&rft.date=2020-10&rft.volume=43&rft.issue=15&rft.spage=9090&rft.epage=9101&rft.pages=9090-9101&rft.issn=0170-4214&rft.eissn=1099-1476&rft_id=info:doi/10.1002/mma.6603&rft_dat=%3Cproquest_cross%3E2439591847%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2439591847&rft_id=info:pmid/&rfr_iscdi=true |