Anisotropic Photonics Topological Transition in Hyperbolic Metamaterials Based on Black Phosphorus
Based on in-plane anisotropy of black phosphorus (BP), anisotropic photonics topological transition (PTT) can be achieved by the proposed hyperbolic metamaterials structure, which is composed of alternating BP/SiO2 multilayer. Through effective medium theory and calculated iso-frequency contour, PTT...
Gespeichert in:
Veröffentlicht in: | Nanomaterials (Basel, Switzerland) Switzerland), 2020-08, Vol.10 (9), p.1694, Article 1694 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 9 |
container_start_page | 1694 |
container_title | Nanomaterials (Basel, Switzerland) |
container_volume | 10 |
creator | Su, Zengping Wang, Yueke |
description | Based on in-plane anisotropy of black phosphorus (BP), anisotropic photonics topological transition (PTT) can be achieved by the proposed hyperbolic metamaterials structure, which is composed of alternating BP/SiO2 multilayer. Through effective medium theory and calculated iso-frequency contour, PTT can be found by carefully choosing the incident plane and other parameters. With the finite element method and transfer matrix method, a narrow angular optical transparency window with angular full width at half maximum of 1.32 degrees exists at PTT. By changing the working wavelength, thickness of SiO2, or electron doping of black phosphorus, the incident plane of realizing PTT can be modulated, and anisotropic PTT is achieved. |
doi_str_mv | 10.3390/nano10091694 |
format | Article |
fullrecord | <record><control><sourceid>proquest_webof</sourceid><recordid>TN_cdi_proquest_journals_2439443491</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_bb26847f8544432ba504a1d104be5ac7</doaj_id><sourcerecordid>2439629524</sourcerecordid><originalsourceid>FETCH-LOGICAL-c455t-d996a15bf142dc679253f1de5f953f4606db8f38c952334e189a35e05d1a74643</originalsourceid><addsrcrecordid>eNqNkkFv1DAQhS0EotW2N35AJC5IsNSO7SS-ILUroJWK2sNytiaOs-sl6wm2U9R_j9OtqpYTJ4_sb57eeB4h7xj9zLmiZx48MkoVq5R4RY5LWqulUIq9flYfkdMYd5TOGG8kf0uOeNnUJav4MWnPvYuYAo7OFLdbTOidicUaRxxw4wwMxTqAjy459IXzxeX9aEOLQ8Z_2AR7SDY4GGJxAdF2RYYuBjC_Zq04bjFM8YS86TNgTx_PBfn57et6dbm8vvl-tTq_XhohZVp2SlXAZNszUXamqlUpec86K3uVC1HRqmubnjdGyZJzYVmjgEtLZcegFpXgC3J10O0QdnoMbg_hXiM4_XCBYaMhJGcGq9u2rBpR940UQvCyBUkFsI5R0VoJps5aXw5a49TubWesTwGGF6IvX7zb6g3e6VrKhmeDC_LhUSDg78nGpPcuGjsM4C1OUZeCq6rMo8y-3_-D7nAKPn_VA5UNiry4Bfl0oEzAGIPtn8wwqucs6OdZyHhzwP_YFvtonPXGPrXkLMiGyUqqORZs5RLM-13h5FNu_fj_rfwv1DvGqQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2439443491</pqid></control><display><type>article</type><title>Anisotropic Photonics Topological Transition in Hyperbolic Metamaterials Based on Black Phosphorus</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central Open Access</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>PubMed Central</source><creator>Su, Zengping ; Wang, Yueke</creator><creatorcontrib>Su, Zengping ; Wang, Yueke</creatorcontrib><description>Based on in-plane anisotropy of black phosphorus (BP), anisotropic photonics topological transition (PTT) can be achieved by the proposed hyperbolic metamaterials structure, which is composed of alternating BP/SiO2 multilayer. Through effective medium theory and calculated iso-frequency contour, PTT can be found by carefully choosing the incident plane and other parameters. With the finite element method and transfer matrix method, a narrow angular optical transparency window with angular full width at half maximum of 1.32 degrees exists at PTT. By changing the working wavelength, thickness of SiO2, or electron doping of black phosphorus, the incident plane of realizing PTT can be modulated, and anisotropic PTT is achieved.</description><identifier>ISSN: 2079-4991</identifier><identifier>EISSN: 2079-4991</identifier><identifier>DOI: 10.3390/nano10091694</identifier><identifier>PMID: 32872163</identifier><language>eng</language><publisher>BASEL: Mdpi</publisher><subject>angular optical transparency ; Anisotropy ; black phosphorus ; Chemistry ; Chemistry, Multidisciplinary ; Effective medium theory ; Electromagnetism ; Finite element method ; Graphene ; hyperbolic metamaterials ; Light ; Materials Science ; Materials Science, Multidisciplinary ; Mathematical analysis ; Metamaterials ; Multilayers ; Nanoscience & Nanotechnology ; Phase transitions ; Phosphorus ; photonic topological transition ; Photonics ; Physical Sciences ; Physics ; Physics, Applied ; Science & Technology ; Science & Technology - Other Topics ; Silicon dioxide ; Technology ; Topology ; Transfer matrices</subject><ispartof>Nanomaterials (Basel, Switzerland), 2020-08, Vol.10 (9), p.1694, Article 1694</ispartof><rights>2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2020 by the authors. 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>13</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000581565900001</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c455t-d996a15bf142dc679253f1de5f953f4606db8f38c952334e189a35e05d1a74643</citedby><cites>FETCH-LOGICAL-c455t-d996a15bf142dc679253f1de5f953f4606db8f38c952334e189a35e05d1a74643</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7558352/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7558352/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,315,728,781,785,865,886,2103,2115,27928,27929,53795,53797</link.rule.ids></links><search><creatorcontrib>Su, Zengping</creatorcontrib><creatorcontrib>Wang, Yueke</creatorcontrib><title>Anisotropic Photonics Topological Transition in Hyperbolic Metamaterials Based on Black Phosphorus</title><title>Nanomaterials (Basel, Switzerland)</title><addtitle>NANOMATERIALS-BASEL</addtitle><description>Based on in-plane anisotropy of black phosphorus (BP), anisotropic photonics topological transition (PTT) can be achieved by the proposed hyperbolic metamaterials structure, which is composed of alternating BP/SiO2 multilayer. Through effective medium theory and calculated iso-frequency contour, PTT can be found by carefully choosing the incident plane and other parameters. With the finite element method and transfer matrix method, a narrow angular optical transparency window with angular full width at half maximum of 1.32 degrees exists at PTT. By changing the working wavelength, thickness of SiO2, or electron doping of black phosphorus, the incident plane of realizing PTT can be modulated, and anisotropic PTT is achieved.</description><subject>angular optical transparency</subject><subject>Anisotropy</subject><subject>black phosphorus</subject><subject>Chemistry</subject><subject>Chemistry, Multidisciplinary</subject><subject>Effective medium theory</subject><subject>Electromagnetism</subject><subject>Finite element method</subject><subject>Graphene</subject><subject>hyperbolic metamaterials</subject><subject>Light</subject><subject>Materials Science</subject><subject>Materials Science, Multidisciplinary</subject><subject>Mathematical analysis</subject><subject>Metamaterials</subject><subject>Multilayers</subject><subject>Nanoscience & Nanotechnology</subject><subject>Phase transitions</subject><subject>Phosphorus</subject><subject>photonic topological transition</subject><subject>Photonics</subject><subject>Physical Sciences</subject><subject>Physics</subject><subject>Physics, Applied</subject><subject>Science & Technology</subject><subject>Science & Technology - Other Topics</subject><subject>Silicon dioxide</subject><subject>Technology</subject><subject>Topology</subject><subject>Transfer matrices</subject><issn>2079-4991</issn><issn>2079-4991</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AOWDO</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNkkFv1DAQhS0EotW2N35AJC5IsNSO7SS-ILUroJWK2sNytiaOs-sl6wm2U9R_j9OtqpYTJ4_sb57eeB4h7xj9zLmiZx48MkoVq5R4RY5LWqulUIq9flYfkdMYd5TOGG8kf0uOeNnUJav4MWnPvYuYAo7OFLdbTOidicUaRxxw4wwMxTqAjy459IXzxeX9aEOLQ8Z_2AR7SDY4GGJxAdF2RYYuBjC_Zq04bjFM8YS86TNgTx_PBfn57et6dbm8vvl-tTq_XhohZVp2SlXAZNszUXamqlUpec86K3uVC1HRqmubnjdGyZJzYVmjgEtLZcegFpXgC3J10O0QdnoMbg_hXiM4_XCBYaMhJGcGq9u2rBpR940UQvCyBUkFsI5R0VoJps5aXw5a49TubWesTwGGF6IvX7zb6g3e6VrKhmeDC_LhUSDg78nGpPcuGjsM4C1OUZeCq6rMo8y-3_-D7nAKPn_VA5UNiry4Bfl0oEzAGIPtn8wwqucs6OdZyHhzwP_YFvtonPXGPrXkLMiGyUqqORZs5RLM-13h5FNu_fj_rfwv1DvGqQ</recordid><startdate>20200828</startdate><enddate>20200828</enddate><creator>Su, Zengping</creator><creator>Wang, Yueke</creator><general>Mdpi</general><general>MDPI AG</general><general>MDPI</general><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>KB.</scope><scope>KR7</scope><scope>L7M</scope><scope>LK8</scope><scope>L~C</scope><scope>L~D</scope><scope>M7P</scope><scope>P64</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20200828</creationdate><title>Anisotropic Photonics Topological Transition in Hyperbolic Metamaterials Based on Black Phosphorus</title><author>Su, Zengping ; Wang, Yueke</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c455t-d996a15bf142dc679253f1de5f953f4606db8f38c952334e189a35e05d1a74643</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>angular optical transparency</topic><topic>Anisotropy</topic><topic>black phosphorus</topic><topic>Chemistry</topic><topic>Chemistry, Multidisciplinary</topic><topic>Effective medium theory</topic><topic>Electromagnetism</topic><topic>Finite element method</topic><topic>Graphene</topic><topic>hyperbolic metamaterials</topic><topic>Light</topic><topic>Materials Science</topic><topic>Materials Science, Multidisciplinary</topic><topic>Mathematical analysis</topic><topic>Metamaterials</topic><topic>Multilayers</topic><topic>Nanoscience & Nanotechnology</topic><topic>Phase transitions</topic><topic>Phosphorus</topic><topic>photonic topological transition</topic><topic>Photonics</topic><topic>Physical Sciences</topic><topic>Physics</topic><topic>Physics, Applied</topic><topic>Science & Technology</topic><topic>Science & Technology - Other Topics</topic><topic>Silicon dioxide</topic><topic>Technology</topic><topic>Topology</topic><topic>Transfer matrices</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Su, Zengping</creatorcontrib><creatorcontrib>Wang, Yueke</creatorcontrib><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Materials Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials Science Collection</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Nanomaterials (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Su, Zengping</au><au>Wang, Yueke</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Anisotropic Photonics Topological Transition in Hyperbolic Metamaterials Based on Black Phosphorus</atitle><jtitle>Nanomaterials (Basel, Switzerland)</jtitle><stitle>NANOMATERIALS-BASEL</stitle><date>2020-08-28</date><risdate>2020</risdate><volume>10</volume><issue>9</issue><spage>1694</spage><pages>1694-</pages><artnum>1694</artnum><issn>2079-4991</issn><eissn>2079-4991</eissn><abstract>Based on in-plane anisotropy of black phosphorus (BP), anisotropic photonics topological transition (PTT) can be achieved by the proposed hyperbolic metamaterials structure, which is composed of alternating BP/SiO2 multilayer. Through effective medium theory and calculated iso-frequency contour, PTT can be found by carefully choosing the incident plane and other parameters. With the finite element method and transfer matrix method, a narrow angular optical transparency window with angular full width at half maximum of 1.32 degrees exists at PTT. By changing the working wavelength, thickness of SiO2, or electron doping of black phosphorus, the incident plane of realizing PTT can be modulated, and anisotropic PTT is achieved.</abstract><cop>BASEL</cop><pub>Mdpi</pub><pmid>32872163</pmid><doi>10.3390/nano10091694</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2079-4991 |
ispartof | Nanomaterials (Basel, Switzerland), 2020-08, Vol.10 (9), p.1694, Article 1694 |
issn | 2079-4991 2079-4991 |
language | eng |
recordid | cdi_proquest_journals_2439443491 |
source | DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central Open Access; MDPI - Multidisciplinary Digital Publishing Institute; PubMed Central |
subjects | angular optical transparency Anisotropy black phosphorus Chemistry Chemistry, Multidisciplinary Effective medium theory Electromagnetism Finite element method Graphene hyperbolic metamaterials Light Materials Science Materials Science, Multidisciplinary Mathematical analysis Metamaterials Multilayers Nanoscience & Nanotechnology Phase transitions Phosphorus photonic topological transition Photonics Physical Sciences Physics Physics, Applied Science & Technology Science & Technology - Other Topics Silicon dioxide Technology Topology Transfer matrices |
title | Anisotropic Photonics Topological Transition in Hyperbolic Metamaterials Based on Black Phosphorus |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T22%3A49%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_webof&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Anisotropic%20Photonics%20Topological%20Transition%20in%20Hyperbolic%20Metamaterials%20Based%20on%20Black%20Phosphorus&rft.jtitle=Nanomaterials%20(Basel,%20Switzerland)&rft.au=Su,%20Zengping&rft.date=2020-08-28&rft.volume=10&rft.issue=9&rft.spage=1694&rft.pages=1694-&rft.artnum=1694&rft.issn=2079-4991&rft.eissn=2079-4991&rft_id=info:doi/10.3390/nano10091694&rft_dat=%3Cproquest_webof%3E2439629524%3C/proquest_webof%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2439443491&rft_id=info:pmid/32872163&rft_doaj_id=oai_doaj_org_article_bb26847f8544432ba504a1d104be5ac7&rfr_iscdi=true |