Boundary effects in General Relativity with tetrad variables

Varying the gravitational Lagrangian produces a boundary contribution that has various physical applications. It determines the right boundary terms to be added to the action once boundary conditions are specified, and defines the symplectic structure of covariant phase space methods. We study gener...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Gen.Rel.Grav 2020, Vol.52 (8), Article 83
Hauptverfasser: Oliveri, Roberto, Speziale, Simone
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 8
container_start_page
container_title Gen.Rel.Grav
container_volume 52
creator Oliveri, Roberto
Speziale, Simone
description Varying the gravitational Lagrangian produces a boundary contribution that has various physical applications. It determines the right boundary terms to be added to the action once boundary conditions are specified, and defines the symplectic structure of covariant phase space methods. We study general boundary variations using tetrads instead of the metric. This choice streamlines many calculations, especially in the case of null hypersurfaces with arbitrary coordinates, where we show that the spin-1 momentum coincides with the rotational 1-form of isolated horizons. The additional gauge symmetry of internal Lorentz transformations leaves however an imprint: the boundary variation differs from the metric one by an exact 3-form. On the one hand, this difference helps in the variational principle: gluing hypersurfaces to determine the action boundary terms for given boundary conditions is simpler, including the most general case of non-orthogonal corners. On the other hand, it affects the construction of Hamiltonian surface charges with covariant phase space methods, which end up being generically different from the metric ones, in both first and second-order formalisms. This situation is treated in the literature gauge-fixing the tetrad to be adapted to the hypersurface or introducing a fine-tuned internal Lorentz transformation depending non-linearly on the fields. We point out and explore the alternative approach of dressing the bare symplectic potential to recover the value of all metric charges, and not just for isometries. Surface charges can also be constructed using a cohomological prescription: in this case we find that the exact 3-form mismatch plays no role, and tetrad and metric charges are equal. This prescription leads however to different charges whether one uses a first-order or second-order Lagrangian, and only for isometries one recovers the same charges.
doi_str_mv 10.1007/s10714-020-02733-8
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_proquest_journals_2439342713</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2439342713</sourcerecordid><originalsourceid>FETCH-LOGICAL-c353t-91ed0f85de87b0cde7ed7982485337b04a7bd95a3289ba7b768af3169df9fed63</originalsourceid><addsrcrecordid>eNp9kE9LAzEQxYMoWKtfwNOCJw-rk2R3k4CXKtoKBUH0HLLNxG5Zd2uSVvrtTV3Rm4dh_vB7j-ERck7higKI60BB0CIHBqkE57k8ICNaCparkrNDMgIAmgsB9JichLBKqxKVGJGb237TWeN3GTqHixiypsum2KE3bfaMrYnNtom77LOJyyxi9MZmW-MbU7cYTsmRM23As58-Jq8P9y93s3z-NH28m8zzBS95zBVFC06WFqWoYWFRoBVKskKWnKdLYURtVWk4k6pOs6ikcZxWyjrl0FZ8TC4H36Vp9do37-lf3ZtGzyZzvb8BKxivymJLE3sxsGvff2wwRL3qN75L72lWcMULJihPFBuohe9D8Oh-bSnofaJ6SDQ5g_5OVMsk4oMoJLh7Q_9n_Y_qC_Aqd50</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2439342713</pqid></control><display><type>article</type><title>Boundary effects in General Relativity with tetrad variables</title><source>Springer Nature - Complete Springer Journals</source><creator>Oliveri, Roberto ; Speziale, Simone</creator><creatorcontrib>Oliveri, Roberto ; Speziale, Simone</creatorcontrib><description>Varying the gravitational Lagrangian produces a boundary contribution that has various physical applications. It determines the right boundary terms to be added to the action once boundary conditions are specified, and defines the symplectic structure of covariant phase space methods. We study general boundary variations using tetrads instead of the metric. This choice streamlines many calculations, especially in the case of null hypersurfaces with arbitrary coordinates, where we show that the spin-1 momentum coincides with the rotational 1-form of isolated horizons. The additional gauge symmetry of internal Lorentz transformations leaves however an imprint: the boundary variation differs from the metric one by an exact 3-form. On the one hand, this difference helps in the variational principle: gluing hypersurfaces to determine the action boundary terms for given boundary conditions is simpler, including the most general case of non-orthogonal corners. On the other hand, it affects the construction of Hamiltonian surface charges with covariant phase space methods, which end up being generically different from the metric ones, in both first and second-order formalisms. This situation is treated in the literature gauge-fixing the tetrad to be adapted to the hypersurface or introducing a fine-tuned internal Lorentz transformation depending non-linearly on the fields. We point out and explore the alternative approach of dressing the bare symplectic potential to recover the value of all metric charges, and not just for isometries. Surface charges can also be constructed using a cohomological prescription: in this case we find that the exact 3-form mismatch plays no role, and tetrad and metric charges are equal. This prescription leads however to different charges whether one uses a first-order or second-order Lagrangian, and only for isometries one recovers the same charges.</description><identifier>ISSN: 0001-7701</identifier><identifier>EISSN: 1572-9532</identifier><identifier>DOI: 10.1007/s10714-020-02733-8</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Astronomy ; Astrophysics and Cosmology ; Boundary conditions ; Classical and Quantum Gravitation ; Differential Geometry ; General Relativity and Quantum Cosmology ; Gluing ; Gravity ; Hyperspaces ; Lorentz transformations ; Mathematical analysis ; Mathematical and Computational Physics ; Physics ; Physics and Astronomy ; Quantum Physics ; Relativity ; Relativity Theory ; Research Article ; Theoretical</subject><ispartof>Gen.Rel.Grav, 2020, Vol.52 (8), Article 83</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020</rights><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c353t-91ed0f85de87b0cde7ed7982485337b04a7bd95a3289ba7b768af3169df9fed63</citedby><cites>FETCH-LOGICAL-c353t-91ed0f85de87b0cde7ed7982485337b04a7bd95a3289ba7b768af3169df9fed63</cites><orcidid>0000-0003-1694-480X ; 0000-0002-7497-871X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10714-020-02733-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10714-020-02733-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,881,27903,27904,41467,42536,51298</link.rule.ids><backlink>$$Uhttps://hal.science/hal-02423654$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Oliveri, Roberto</creatorcontrib><creatorcontrib>Speziale, Simone</creatorcontrib><title>Boundary effects in General Relativity with tetrad variables</title><title>Gen.Rel.Grav</title><addtitle>Gen Relativ Gravit</addtitle><description>Varying the gravitational Lagrangian produces a boundary contribution that has various physical applications. It determines the right boundary terms to be added to the action once boundary conditions are specified, and defines the symplectic structure of covariant phase space methods. We study general boundary variations using tetrads instead of the metric. This choice streamlines many calculations, especially in the case of null hypersurfaces with arbitrary coordinates, where we show that the spin-1 momentum coincides with the rotational 1-form of isolated horizons. The additional gauge symmetry of internal Lorentz transformations leaves however an imprint: the boundary variation differs from the metric one by an exact 3-form. On the one hand, this difference helps in the variational principle: gluing hypersurfaces to determine the action boundary terms for given boundary conditions is simpler, including the most general case of non-orthogonal corners. On the other hand, it affects the construction of Hamiltonian surface charges with covariant phase space methods, which end up being generically different from the metric ones, in both first and second-order formalisms. This situation is treated in the literature gauge-fixing the tetrad to be adapted to the hypersurface or introducing a fine-tuned internal Lorentz transformation depending non-linearly on the fields. We point out and explore the alternative approach of dressing the bare symplectic potential to recover the value of all metric charges, and not just for isometries. Surface charges can also be constructed using a cohomological prescription: in this case we find that the exact 3-form mismatch plays no role, and tetrad and metric charges are equal. This prescription leads however to different charges whether one uses a first-order or second-order Lagrangian, and only for isometries one recovers the same charges.</description><subject>Astronomy</subject><subject>Astrophysics and Cosmology</subject><subject>Boundary conditions</subject><subject>Classical and Quantum Gravitation</subject><subject>Differential Geometry</subject><subject>General Relativity and Quantum Cosmology</subject><subject>Gluing</subject><subject>Gravity</subject><subject>Hyperspaces</subject><subject>Lorentz transformations</subject><subject>Mathematical analysis</subject><subject>Mathematical and Computational Physics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum Physics</subject><subject>Relativity</subject><subject>Relativity Theory</subject><subject>Research Article</subject><subject>Theoretical</subject><issn>0001-7701</issn><issn>1572-9532</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LAzEQxYMoWKtfwNOCJw-rk2R3k4CXKtoKBUH0HLLNxG5Zd2uSVvrtTV3Rm4dh_vB7j-ERck7higKI60BB0CIHBqkE57k8ICNaCparkrNDMgIAmgsB9JichLBKqxKVGJGb237TWeN3GTqHixiypsum2KE3bfaMrYnNtom77LOJyyxi9MZmW-MbU7cYTsmRM23As58-Jq8P9y93s3z-NH28m8zzBS95zBVFC06WFqWoYWFRoBVKskKWnKdLYURtVWk4k6pOs6ikcZxWyjrl0FZ8TC4H36Vp9do37-lf3ZtGzyZzvb8BKxivymJLE3sxsGvff2wwRL3qN75L72lWcMULJihPFBuohe9D8Oh-bSnofaJ6SDQ5g_5OVMsk4oMoJLh7Q_9n_Y_qC_Aqd50</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Oliveri, Roberto</creator><creator>Speziale, Simone</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0003-1694-480X</orcidid><orcidid>https://orcid.org/0000-0002-7497-871X</orcidid></search><sort><creationdate>2020</creationdate><title>Boundary effects in General Relativity with tetrad variables</title><author>Oliveri, Roberto ; Speziale, Simone</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c353t-91ed0f85de87b0cde7ed7982485337b04a7bd95a3289ba7b768af3169df9fed63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Astronomy</topic><topic>Astrophysics and Cosmology</topic><topic>Boundary conditions</topic><topic>Classical and Quantum Gravitation</topic><topic>Differential Geometry</topic><topic>General Relativity and Quantum Cosmology</topic><topic>Gluing</topic><topic>Gravity</topic><topic>Hyperspaces</topic><topic>Lorentz transformations</topic><topic>Mathematical analysis</topic><topic>Mathematical and Computational Physics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum Physics</topic><topic>Relativity</topic><topic>Relativity Theory</topic><topic>Research Article</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Oliveri, Roberto</creatorcontrib><creatorcontrib>Speziale, Simone</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Gen.Rel.Grav</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Oliveri, Roberto</au><au>Speziale, Simone</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Boundary effects in General Relativity with tetrad variables</atitle><jtitle>Gen.Rel.Grav</jtitle><stitle>Gen Relativ Gravit</stitle><date>2020</date><risdate>2020</risdate><volume>52</volume><issue>8</issue><artnum>83</artnum><issn>0001-7701</issn><eissn>1572-9532</eissn><abstract>Varying the gravitational Lagrangian produces a boundary contribution that has various physical applications. It determines the right boundary terms to be added to the action once boundary conditions are specified, and defines the symplectic structure of covariant phase space methods. We study general boundary variations using tetrads instead of the metric. This choice streamlines many calculations, especially in the case of null hypersurfaces with arbitrary coordinates, where we show that the spin-1 momentum coincides with the rotational 1-form of isolated horizons. The additional gauge symmetry of internal Lorentz transformations leaves however an imprint: the boundary variation differs from the metric one by an exact 3-form. On the one hand, this difference helps in the variational principle: gluing hypersurfaces to determine the action boundary terms for given boundary conditions is simpler, including the most general case of non-orthogonal corners. On the other hand, it affects the construction of Hamiltonian surface charges with covariant phase space methods, which end up being generically different from the metric ones, in both first and second-order formalisms. This situation is treated in the literature gauge-fixing the tetrad to be adapted to the hypersurface or introducing a fine-tuned internal Lorentz transformation depending non-linearly on the fields. We point out and explore the alternative approach of dressing the bare symplectic potential to recover the value of all metric charges, and not just for isometries. Surface charges can also be constructed using a cohomological prescription: in this case we find that the exact 3-form mismatch plays no role, and tetrad and metric charges are equal. This prescription leads however to different charges whether one uses a first-order or second-order Lagrangian, and only for isometries one recovers the same charges.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10714-020-02733-8</doi><orcidid>https://orcid.org/0000-0003-1694-480X</orcidid><orcidid>https://orcid.org/0000-0002-7497-871X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0001-7701
ispartof Gen.Rel.Grav, 2020, Vol.52 (8), Article 83
issn 0001-7701
1572-9532
language eng
recordid cdi_proquest_journals_2439342713
source Springer Nature - Complete Springer Journals
subjects Astronomy
Astrophysics and Cosmology
Boundary conditions
Classical and Quantum Gravitation
Differential Geometry
General Relativity and Quantum Cosmology
Gluing
Gravity
Hyperspaces
Lorentz transformations
Mathematical analysis
Mathematical and Computational Physics
Physics
Physics and Astronomy
Quantum Physics
Relativity
Relativity Theory
Research Article
Theoretical
title Boundary effects in General Relativity with tetrad variables
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T12%3A21%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Boundary%20effects%20in%20General%20Relativity%20with%20tetrad%20variables&rft.jtitle=Gen.Rel.Grav&rft.au=Oliveri,%20Roberto&rft.date=2020&rft.volume=52&rft.issue=8&rft.artnum=83&rft.issn=0001-7701&rft.eissn=1572-9532&rft_id=info:doi/10.1007/s10714-020-02733-8&rft_dat=%3Cproquest_hal_p%3E2439342713%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2439342713&rft_id=info:pmid/&rfr_iscdi=true