Recent advances in two‐dimensional transition metal dichalcogenides as photoelectrocatalyst for hydrogen evolution reaction
Hydrogen gas has been attracting significant interest as an emerging energy source that is clean, sustainable, and renewable. Primarily, it can be produced via photoelectrochemical (PEC) splitting of water using solar energy. Among the various catalysts employed for the photoreduction of water, two‐...
Gespeichert in:
Veröffentlicht in: | Journal of chemical technology and biotechnology (1986) 2020-10, Vol.95 (10), p.2597-2607 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2607 |
---|---|
container_issue | 10 |
container_start_page | 2597 |
container_title | Journal of chemical technology and biotechnology (1986) |
container_volume | 95 |
creator | Nguyen, Van‐Huy Nguyen, Thang P Le, Thu‐Ha Vo, Dai‐Viet N Nguyen, Dang LT Trinh, Quang Thang Kim, Il Tae Le, Quyet Van |
description | Hydrogen gas has been attracting significant interest as an emerging energy source that is clean, sustainable, and renewable. Primarily, it can be produced via photoelectrochemical (PEC) splitting of water using solar energy. Among the various catalysts employed for the photoreduction of water, two‐dimensional transition metal dichalcogenides (2D‐TMDs) are inarguably the best candidates toward industrialization because they have extraordinary physical, optical, and electric properties, and are solution‐processable at low costs. In this review, we focus on the development of 2D‐TMDs and their PEC properties toward the hydrogen evolution reaction. First, the synthesis and properties of 2D materials are summarized and discussed. Next, the strategies for improving the photocatalytic activity of the 2D material‐based catalysts for water splitting are thoroughly investigated. Finally, the remaining challenges and direction for the future development of 2D‐TMDs in PEC catalysis‐derived hydrogen evolution reaction are addressed. © 2020 Society of Chemical Industry |
doi_str_mv | 10.1002/jctb.6335 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2439315369</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2439315369</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4005-b51995d6900c0d3f8497d4613ac8a76006508c7c0f649a022bf46e35352e71683</originalsourceid><addsrcrecordid>eNp1kE1OwzAQhS0EEqWw4AaWWLFIO4ljJ15Cxa8qIaGytlzboanSuNhuqyyQOAJn5CQ4LVtW82b0vZHeQ-gyhVEKkI2XKsxHjBB6hAYp8CLJGYNjNICMlUlGC3qKzrxfAgArMzZAn69GmTZgqbeyVcbjusVhZ3--vnW9Mq2vbSsbHJyMMsQFr0yIB12rhWyUfTdtraNLerxe2GBNY1RwVskIdT7gyjq86LTrQWy2ttnsnzgjVS_O0UklG28u_uYQvd3fzSaPyfTl4WlyM01UDkCTOU05p5pxAAWaVGXOC52zlEhVyoLFLBRKVSioWM4lZNm8ypkhlNDMFCkryRBdHf6unf3YGB_E0m5cTOZFlhNOUkoYj9T1gVLOeu9MJdauXknXiRRE367o2xV9u5EdH9hd3Zjuf1A8T2a3e8cvcsF_Yw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2439315369</pqid></control><display><type>article</type><title>Recent advances in two‐dimensional transition metal dichalcogenides as photoelectrocatalyst for hydrogen evolution reaction</title><source>Access via Wiley Online Library</source><creator>Nguyen, Van‐Huy ; Nguyen, Thang P ; Le, Thu‐Ha ; Vo, Dai‐Viet N ; Nguyen, Dang LT ; Trinh, Quang Thang ; Kim, Il Tae ; Le, Quyet Van</creator><creatorcontrib>Nguyen, Van‐Huy ; Nguyen, Thang P ; Le, Thu‐Ha ; Vo, Dai‐Viet N ; Nguyen, Dang LT ; Trinh, Quang Thang ; Kim, Il Tae ; Le, Quyet Van</creatorcontrib><description>Hydrogen gas has been attracting significant interest as an emerging energy source that is clean, sustainable, and renewable. Primarily, it can be produced via photoelectrochemical (PEC) splitting of water using solar energy. Among the various catalysts employed for the photoreduction of water, two‐dimensional transition metal dichalcogenides (2D‐TMDs) are inarguably the best candidates toward industrialization because they have extraordinary physical, optical, and electric properties, and are solution‐processable at low costs. In this review, we focus on the development of 2D‐TMDs and their PEC properties toward the hydrogen evolution reaction. First, the synthesis and properties of 2D materials are summarized and discussed. Next, the strategies for improving the photocatalytic activity of the 2D material‐based catalysts for water splitting are thoroughly investigated. Finally, the remaining challenges and direction for the future development of 2D‐TMDs in PEC catalysis‐derived hydrogen evolution reaction are addressed. © 2020 Society of Chemical Industry</description><identifier>ISSN: 0268-2575</identifier><identifier>EISSN: 1097-4660</identifier><identifier>DOI: 10.1002/jctb.6335</identifier><language>eng</language><publisher>Chichester, UK: John Wiley & Sons, Ltd</publisher><subject>2D‐TMDs ; Catalysis ; Catalysts ; Catalytic activity ; Chalcogenides ; Chemical synthesis ; Clean energy ; Electric properties ; Energy sources ; Evolution ; HER ; Hydrogen ; Hydrogen evolution reactions ; Optical properties ; Photocatalysis ; photocatalyst ; photoelectrochemical ; Photoreduction ; Solar energy ; Splitting ; Transition metal compounds ; Two dimensional materials ; Water splitting</subject><ispartof>Journal of chemical technology and biotechnology (1986), 2020-10, Vol.95 (10), p.2597-2607</ispartof><rights>2020 Society of Chemical Industry</rights><rights>Copyright © 2020 Society of Chemical Industry</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4005-b51995d6900c0d3f8497d4613ac8a76006508c7c0f649a022bf46e35352e71683</citedby><cites>FETCH-LOGICAL-c4005-b51995d6900c0d3f8497d4613ac8a76006508c7c0f649a022bf46e35352e71683</cites><orcidid>0000-0002-4313-301X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjctb.6335$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjctb.6335$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Nguyen, Van‐Huy</creatorcontrib><creatorcontrib>Nguyen, Thang P</creatorcontrib><creatorcontrib>Le, Thu‐Ha</creatorcontrib><creatorcontrib>Vo, Dai‐Viet N</creatorcontrib><creatorcontrib>Nguyen, Dang LT</creatorcontrib><creatorcontrib>Trinh, Quang Thang</creatorcontrib><creatorcontrib>Kim, Il Tae</creatorcontrib><creatorcontrib>Le, Quyet Van</creatorcontrib><title>Recent advances in two‐dimensional transition metal dichalcogenides as photoelectrocatalyst for hydrogen evolution reaction</title><title>Journal of chemical technology and biotechnology (1986)</title><description>Hydrogen gas has been attracting significant interest as an emerging energy source that is clean, sustainable, and renewable. Primarily, it can be produced via photoelectrochemical (PEC) splitting of water using solar energy. Among the various catalysts employed for the photoreduction of water, two‐dimensional transition metal dichalcogenides (2D‐TMDs) are inarguably the best candidates toward industrialization because they have extraordinary physical, optical, and electric properties, and are solution‐processable at low costs. In this review, we focus on the development of 2D‐TMDs and their PEC properties toward the hydrogen evolution reaction. First, the synthesis and properties of 2D materials are summarized and discussed. Next, the strategies for improving the photocatalytic activity of the 2D material‐based catalysts for water splitting are thoroughly investigated. Finally, the remaining challenges and direction for the future development of 2D‐TMDs in PEC catalysis‐derived hydrogen evolution reaction are addressed. © 2020 Society of Chemical Industry</description><subject>2D‐TMDs</subject><subject>Catalysis</subject><subject>Catalysts</subject><subject>Catalytic activity</subject><subject>Chalcogenides</subject><subject>Chemical synthesis</subject><subject>Clean energy</subject><subject>Electric properties</subject><subject>Energy sources</subject><subject>Evolution</subject><subject>HER</subject><subject>Hydrogen</subject><subject>Hydrogen evolution reactions</subject><subject>Optical properties</subject><subject>Photocatalysis</subject><subject>photocatalyst</subject><subject>photoelectrochemical</subject><subject>Photoreduction</subject><subject>Solar energy</subject><subject>Splitting</subject><subject>Transition metal compounds</subject><subject>Two dimensional materials</subject><subject>Water splitting</subject><issn>0268-2575</issn><issn>1097-4660</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kE1OwzAQhS0EEqWw4AaWWLFIO4ljJ15Cxa8qIaGytlzboanSuNhuqyyQOAJn5CQ4LVtW82b0vZHeQ-gyhVEKkI2XKsxHjBB6hAYp8CLJGYNjNICMlUlGC3qKzrxfAgArMzZAn69GmTZgqbeyVcbjusVhZ3--vnW9Mq2vbSsbHJyMMsQFr0yIB12rhWyUfTdtraNLerxe2GBNY1RwVskIdT7gyjq86LTrQWy2ttnsnzgjVS_O0UklG28u_uYQvd3fzSaPyfTl4WlyM01UDkCTOU05p5pxAAWaVGXOC52zlEhVyoLFLBRKVSioWM4lZNm8ypkhlNDMFCkryRBdHf6unf3YGB_E0m5cTOZFlhNOUkoYj9T1gVLOeu9MJdauXknXiRRE367o2xV9u5EdH9hd3Zjuf1A8T2a3e8cvcsF_Yw</recordid><startdate>202010</startdate><enddate>202010</enddate><creator>Nguyen, Van‐Huy</creator><creator>Nguyen, Thang P</creator><creator>Le, Thu‐Ha</creator><creator>Vo, Dai‐Viet N</creator><creator>Nguyen, Dang LT</creator><creator>Trinh, Quang Thang</creator><creator>Kim, Il Tae</creator><creator>Le, Quyet Van</creator><general>John Wiley & Sons, Ltd</general><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><orcidid>https://orcid.org/0000-0002-4313-301X</orcidid></search><sort><creationdate>202010</creationdate><title>Recent advances in two‐dimensional transition metal dichalcogenides as photoelectrocatalyst for hydrogen evolution reaction</title><author>Nguyen, Van‐Huy ; Nguyen, Thang P ; Le, Thu‐Ha ; Vo, Dai‐Viet N ; Nguyen, Dang LT ; Trinh, Quang Thang ; Kim, Il Tae ; Le, Quyet Van</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4005-b51995d6900c0d3f8497d4613ac8a76006508c7c0f649a022bf46e35352e71683</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>2D‐TMDs</topic><topic>Catalysis</topic><topic>Catalysts</topic><topic>Catalytic activity</topic><topic>Chalcogenides</topic><topic>Chemical synthesis</topic><topic>Clean energy</topic><topic>Electric properties</topic><topic>Energy sources</topic><topic>Evolution</topic><topic>HER</topic><topic>Hydrogen</topic><topic>Hydrogen evolution reactions</topic><topic>Optical properties</topic><topic>Photocatalysis</topic><topic>photocatalyst</topic><topic>photoelectrochemical</topic><topic>Photoreduction</topic><topic>Solar energy</topic><topic>Splitting</topic><topic>Transition metal compounds</topic><topic>Two dimensional materials</topic><topic>Water splitting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nguyen, Van‐Huy</creatorcontrib><creatorcontrib>Nguyen, Thang P</creatorcontrib><creatorcontrib>Le, Thu‐Ha</creatorcontrib><creatorcontrib>Vo, Dai‐Viet N</creatorcontrib><creatorcontrib>Nguyen, Dang LT</creatorcontrib><creatorcontrib>Trinh, Quang Thang</creatorcontrib><creatorcontrib>Kim, Il Tae</creatorcontrib><creatorcontrib>Le, Quyet Van</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Journal of chemical technology and biotechnology (1986)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nguyen, Van‐Huy</au><au>Nguyen, Thang P</au><au>Le, Thu‐Ha</au><au>Vo, Dai‐Viet N</au><au>Nguyen, Dang LT</au><au>Trinh, Quang Thang</au><au>Kim, Il Tae</au><au>Le, Quyet Van</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Recent advances in two‐dimensional transition metal dichalcogenides as photoelectrocatalyst for hydrogen evolution reaction</atitle><jtitle>Journal of chemical technology and biotechnology (1986)</jtitle><date>2020-10</date><risdate>2020</risdate><volume>95</volume><issue>10</issue><spage>2597</spage><epage>2607</epage><pages>2597-2607</pages><issn>0268-2575</issn><eissn>1097-4660</eissn><abstract>Hydrogen gas has been attracting significant interest as an emerging energy source that is clean, sustainable, and renewable. Primarily, it can be produced via photoelectrochemical (PEC) splitting of water using solar energy. Among the various catalysts employed for the photoreduction of water, two‐dimensional transition metal dichalcogenides (2D‐TMDs) are inarguably the best candidates toward industrialization because they have extraordinary physical, optical, and electric properties, and are solution‐processable at low costs. In this review, we focus on the development of 2D‐TMDs and their PEC properties toward the hydrogen evolution reaction. First, the synthesis and properties of 2D materials are summarized and discussed. Next, the strategies for improving the photocatalytic activity of the 2D material‐based catalysts for water splitting are thoroughly investigated. Finally, the remaining challenges and direction for the future development of 2D‐TMDs in PEC catalysis‐derived hydrogen evolution reaction are addressed. © 2020 Society of Chemical Industry</abstract><cop>Chichester, UK</cop><pub>John Wiley & Sons, Ltd</pub><doi>10.1002/jctb.6335</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-4313-301X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0268-2575 |
ispartof | Journal of chemical technology and biotechnology (1986), 2020-10, Vol.95 (10), p.2597-2607 |
issn | 0268-2575 1097-4660 |
language | eng |
recordid | cdi_proquest_journals_2439315369 |
source | Access via Wiley Online Library |
subjects | 2D‐TMDs Catalysis Catalysts Catalytic activity Chalcogenides Chemical synthesis Clean energy Electric properties Energy sources Evolution HER Hydrogen Hydrogen evolution reactions Optical properties Photocatalysis photocatalyst photoelectrochemical Photoreduction Solar energy Splitting Transition metal compounds Two dimensional materials Water splitting |
title | Recent advances in two‐dimensional transition metal dichalcogenides as photoelectrocatalyst for hydrogen evolution reaction |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T11%3A46%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Recent%20advances%20in%20two%E2%80%90dimensional%20transition%20metal%20dichalcogenides%20as%20photoelectrocatalyst%20for%20hydrogen%20evolution%20reaction&rft.jtitle=Journal%20of%20chemical%20technology%20and%20biotechnology%20(1986)&rft.au=Nguyen,%20Van%E2%80%90Huy&rft.date=2020-10&rft.volume=95&rft.issue=10&rft.spage=2597&rft.epage=2607&rft.pages=2597-2607&rft.issn=0268-2575&rft.eissn=1097-4660&rft_id=info:doi/10.1002/jctb.6335&rft_dat=%3Cproquest_cross%3E2439315369%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2439315369&rft_id=info:pmid/&rfr_iscdi=true |