Recent advances in two‐dimensional transition metal dichalcogenides as photoelectrocatalyst for hydrogen evolution reaction

Hydrogen gas has been attracting significant interest as an emerging energy source that is clean, sustainable, and renewable. Primarily, it can be produced via photoelectrochemical (PEC) splitting of water using solar energy. Among the various catalysts employed for the photoreduction of water, two‐...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of chemical technology and biotechnology (1986) 2020-10, Vol.95 (10), p.2597-2607
Hauptverfasser: Nguyen, Van‐Huy, Nguyen, Thang P, Le, Thu‐Ha, Vo, Dai‐Viet N, Nguyen, Dang LT, Trinh, Quang Thang, Kim, Il Tae, Le, Quyet Van
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2607
container_issue 10
container_start_page 2597
container_title Journal of chemical technology and biotechnology (1986)
container_volume 95
creator Nguyen, Van‐Huy
Nguyen, Thang P
Le, Thu‐Ha
Vo, Dai‐Viet N
Nguyen, Dang LT
Trinh, Quang Thang
Kim, Il Tae
Le, Quyet Van
description Hydrogen gas has been attracting significant interest as an emerging energy source that is clean, sustainable, and renewable. Primarily, it can be produced via photoelectrochemical (PEC) splitting of water using solar energy. Among the various catalysts employed for the photoreduction of water, two‐dimensional transition metal dichalcogenides (2D‐TMDs) are inarguably the best candidates toward industrialization because they have extraordinary physical, optical, and electric properties, and are solution‐processable at low costs. In this review, we focus on the development of 2D‐TMDs and their PEC properties toward the hydrogen evolution reaction. First, the synthesis and properties of 2D materials are summarized and discussed. Next, the strategies for improving the photocatalytic activity of the 2D material‐based catalysts for water splitting are thoroughly investigated. Finally, the remaining challenges and direction for the future development of 2D‐TMDs in PEC catalysis‐derived hydrogen evolution reaction are addressed. © 2020 Society of Chemical Industry
doi_str_mv 10.1002/jctb.6335
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2439315369</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2439315369</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4005-b51995d6900c0d3f8497d4613ac8a76006508c7c0f649a022bf46e35352e71683</originalsourceid><addsrcrecordid>eNp1kE1OwzAQhS0EEqWw4AaWWLFIO4ljJ15Cxa8qIaGytlzboanSuNhuqyyQOAJn5CQ4LVtW82b0vZHeQ-gyhVEKkI2XKsxHjBB6hAYp8CLJGYNjNICMlUlGC3qKzrxfAgArMzZAn69GmTZgqbeyVcbjusVhZ3--vnW9Mq2vbSsbHJyMMsQFr0yIB12rhWyUfTdtraNLerxe2GBNY1RwVskIdT7gyjq86LTrQWy2ttnsnzgjVS_O0UklG28u_uYQvd3fzSaPyfTl4WlyM01UDkCTOU05p5pxAAWaVGXOC52zlEhVyoLFLBRKVSioWM4lZNm8ypkhlNDMFCkryRBdHf6unf3YGB_E0m5cTOZFlhNOUkoYj9T1gVLOeu9MJdauXknXiRRE367o2xV9u5EdH9hd3Zjuf1A8T2a3e8cvcsF_Yw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2439315369</pqid></control><display><type>article</type><title>Recent advances in two‐dimensional transition metal dichalcogenides as photoelectrocatalyst for hydrogen evolution reaction</title><source>Access via Wiley Online Library</source><creator>Nguyen, Van‐Huy ; Nguyen, Thang P ; Le, Thu‐Ha ; Vo, Dai‐Viet N ; Nguyen, Dang LT ; Trinh, Quang Thang ; Kim, Il Tae ; Le, Quyet Van</creator><creatorcontrib>Nguyen, Van‐Huy ; Nguyen, Thang P ; Le, Thu‐Ha ; Vo, Dai‐Viet N ; Nguyen, Dang LT ; Trinh, Quang Thang ; Kim, Il Tae ; Le, Quyet Van</creatorcontrib><description>Hydrogen gas has been attracting significant interest as an emerging energy source that is clean, sustainable, and renewable. Primarily, it can be produced via photoelectrochemical (PEC) splitting of water using solar energy. Among the various catalysts employed for the photoreduction of water, two‐dimensional transition metal dichalcogenides (2D‐TMDs) are inarguably the best candidates toward industrialization because they have extraordinary physical, optical, and electric properties, and are solution‐processable at low costs. In this review, we focus on the development of 2D‐TMDs and their PEC properties toward the hydrogen evolution reaction. First, the synthesis and properties of 2D materials are summarized and discussed. Next, the strategies for improving the photocatalytic activity of the 2D material‐based catalysts for water splitting are thoroughly investigated. Finally, the remaining challenges and direction for the future development of 2D‐TMDs in PEC catalysis‐derived hydrogen evolution reaction are addressed. © 2020 Society of Chemical Industry</description><identifier>ISSN: 0268-2575</identifier><identifier>EISSN: 1097-4660</identifier><identifier>DOI: 10.1002/jctb.6335</identifier><language>eng</language><publisher>Chichester, UK: John Wiley &amp; Sons, Ltd</publisher><subject>2D‐TMDs ; Catalysis ; Catalysts ; Catalytic activity ; Chalcogenides ; Chemical synthesis ; Clean energy ; Electric properties ; Energy sources ; Evolution ; HER ; Hydrogen ; Hydrogen evolution reactions ; Optical properties ; Photocatalysis ; photocatalyst ; photoelectrochemical ; Photoreduction ; Solar energy ; Splitting ; Transition metal compounds ; Two dimensional materials ; Water splitting</subject><ispartof>Journal of chemical technology and biotechnology (1986), 2020-10, Vol.95 (10), p.2597-2607</ispartof><rights>2020 Society of Chemical Industry</rights><rights>Copyright © 2020 Society of Chemical Industry</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4005-b51995d6900c0d3f8497d4613ac8a76006508c7c0f649a022bf46e35352e71683</citedby><cites>FETCH-LOGICAL-c4005-b51995d6900c0d3f8497d4613ac8a76006508c7c0f649a022bf46e35352e71683</cites><orcidid>0000-0002-4313-301X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjctb.6335$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjctb.6335$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Nguyen, Van‐Huy</creatorcontrib><creatorcontrib>Nguyen, Thang P</creatorcontrib><creatorcontrib>Le, Thu‐Ha</creatorcontrib><creatorcontrib>Vo, Dai‐Viet N</creatorcontrib><creatorcontrib>Nguyen, Dang LT</creatorcontrib><creatorcontrib>Trinh, Quang Thang</creatorcontrib><creatorcontrib>Kim, Il Tae</creatorcontrib><creatorcontrib>Le, Quyet Van</creatorcontrib><title>Recent advances in two‐dimensional transition metal dichalcogenides as photoelectrocatalyst for hydrogen evolution reaction</title><title>Journal of chemical technology and biotechnology (1986)</title><description>Hydrogen gas has been attracting significant interest as an emerging energy source that is clean, sustainable, and renewable. Primarily, it can be produced via photoelectrochemical (PEC) splitting of water using solar energy. Among the various catalysts employed for the photoreduction of water, two‐dimensional transition metal dichalcogenides (2D‐TMDs) are inarguably the best candidates toward industrialization because they have extraordinary physical, optical, and electric properties, and are solution‐processable at low costs. In this review, we focus on the development of 2D‐TMDs and their PEC properties toward the hydrogen evolution reaction. First, the synthesis and properties of 2D materials are summarized and discussed. Next, the strategies for improving the photocatalytic activity of the 2D material‐based catalysts for water splitting are thoroughly investigated. Finally, the remaining challenges and direction for the future development of 2D‐TMDs in PEC catalysis‐derived hydrogen evolution reaction are addressed. © 2020 Society of Chemical Industry</description><subject>2D‐TMDs</subject><subject>Catalysis</subject><subject>Catalysts</subject><subject>Catalytic activity</subject><subject>Chalcogenides</subject><subject>Chemical synthesis</subject><subject>Clean energy</subject><subject>Electric properties</subject><subject>Energy sources</subject><subject>Evolution</subject><subject>HER</subject><subject>Hydrogen</subject><subject>Hydrogen evolution reactions</subject><subject>Optical properties</subject><subject>Photocatalysis</subject><subject>photocatalyst</subject><subject>photoelectrochemical</subject><subject>Photoreduction</subject><subject>Solar energy</subject><subject>Splitting</subject><subject>Transition metal compounds</subject><subject>Two dimensional materials</subject><subject>Water splitting</subject><issn>0268-2575</issn><issn>1097-4660</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kE1OwzAQhS0EEqWw4AaWWLFIO4ljJ15Cxa8qIaGytlzboanSuNhuqyyQOAJn5CQ4LVtW82b0vZHeQ-gyhVEKkI2XKsxHjBB6hAYp8CLJGYNjNICMlUlGC3qKzrxfAgArMzZAn69GmTZgqbeyVcbjusVhZ3--vnW9Mq2vbSsbHJyMMsQFr0yIB12rhWyUfTdtraNLerxe2GBNY1RwVskIdT7gyjq86LTrQWy2ttnsnzgjVS_O0UklG28u_uYQvd3fzSaPyfTl4WlyM01UDkCTOU05p5pxAAWaVGXOC52zlEhVyoLFLBRKVSioWM4lZNm8ypkhlNDMFCkryRBdHf6unf3YGB_E0m5cTOZFlhNOUkoYj9T1gVLOeu9MJdauXknXiRRE367o2xV9u5EdH9hd3Zjuf1A8T2a3e8cvcsF_Yw</recordid><startdate>202010</startdate><enddate>202010</enddate><creator>Nguyen, Van‐Huy</creator><creator>Nguyen, Thang P</creator><creator>Le, Thu‐Ha</creator><creator>Vo, Dai‐Viet N</creator><creator>Nguyen, Dang LT</creator><creator>Trinh, Quang Thang</creator><creator>Kim, Il Tae</creator><creator>Le, Quyet Van</creator><general>John Wiley &amp; Sons, Ltd</general><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><orcidid>https://orcid.org/0000-0002-4313-301X</orcidid></search><sort><creationdate>202010</creationdate><title>Recent advances in two‐dimensional transition metal dichalcogenides as photoelectrocatalyst for hydrogen evolution reaction</title><author>Nguyen, Van‐Huy ; Nguyen, Thang P ; Le, Thu‐Ha ; Vo, Dai‐Viet N ; Nguyen, Dang LT ; Trinh, Quang Thang ; Kim, Il Tae ; Le, Quyet Van</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4005-b51995d6900c0d3f8497d4613ac8a76006508c7c0f649a022bf46e35352e71683</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>2D‐TMDs</topic><topic>Catalysis</topic><topic>Catalysts</topic><topic>Catalytic activity</topic><topic>Chalcogenides</topic><topic>Chemical synthesis</topic><topic>Clean energy</topic><topic>Electric properties</topic><topic>Energy sources</topic><topic>Evolution</topic><topic>HER</topic><topic>Hydrogen</topic><topic>Hydrogen evolution reactions</topic><topic>Optical properties</topic><topic>Photocatalysis</topic><topic>photocatalyst</topic><topic>photoelectrochemical</topic><topic>Photoreduction</topic><topic>Solar energy</topic><topic>Splitting</topic><topic>Transition metal compounds</topic><topic>Two dimensional materials</topic><topic>Water splitting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nguyen, Van‐Huy</creatorcontrib><creatorcontrib>Nguyen, Thang P</creatorcontrib><creatorcontrib>Le, Thu‐Ha</creatorcontrib><creatorcontrib>Vo, Dai‐Viet N</creatorcontrib><creatorcontrib>Nguyen, Dang LT</creatorcontrib><creatorcontrib>Trinh, Quang Thang</creatorcontrib><creatorcontrib>Kim, Il Tae</creatorcontrib><creatorcontrib>Le, Quyet Van</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Journal of chemical technology and biotechnology (1986)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nguyen, Van‐Huy</au><au>Nguyen, Thang P</au><au>Le, Thu‐Ha</au><au>Vo, Dai‐Viet N</au><au>Nguyen, Dang LT</au><au>Trinh, Quang Thang</au><au>Kim, Il Tae</au><au>Le, Quyet Van</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Recent advances in two‐dimensional transition metal dichalcogenides as photoelectrocatalyst for hydrogen evolution reaction</atitle><jtitle>Journal of chemical technology and biotechnology (1986)</jtitle><date>2020-10</date><risdate>2020</risdate><volume>95</volume><issue>10</issue><spage>2597</spage><epage>2607</epage><pages>2597-2607</pages><issn>0268-2575</issn><eissn>1097-4660</eissn><abstract>Hydrogen gas has been attracting significant interest as an emerging energy source that is clean, sustainable, and renewable. Primarily, it can be produced via photoelectrochemical (PEC) splitting of water using solar energy. Among the various catalysts employed for the photoreduction of water, two‐dimensional transition metal dichalcogenides (2D‐TMDs) are inarguably the best candidates toward industrialization because they have extraordinary physical, optical, and electric properties, and are solution‐processable at low costs. In this review, we focus on the development of 2D‐TMDs and their PEC properties toward the hydrogen evolution reaction. First, the synthesis and properties of 2D materials are summarized and discussed. Next, the strategies for improving the photocatalytic activity of the 2D material‐based catalysts for water splitting are thoroughly investigated. Finally, the remaining challenges and direction for the future development of 2D‐TMDs in PEC catalysis‐derived hydrogen evolution reaction are addressed. © 2020 Society of Chemical Industry</abstract><cop>Chichester, UK</cop><pub>John Wiley &amp; Sons, Ltd</pub><doi>10.1002/jctb.6335</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-4313-301X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0268-2575
ispartof Journal of chemical technology and biotechnology (1986), 2020-10, Vol.95 (10), p.2597-2607
issn 0268-2575
1097-4660
language eng
recordid cdi_proquest_journals_2439315369
source Access via Wiley Online Library
subjects 2D‐TMDs
Catalysis
Catalysts
Catalytic activity
Chalcogenides
Chemical synthesis
Clean energy
Electric properties
Energy sources
Evolution
HER
Hydrogen
Hydrogen evolution reactions
Optical properties
Photocatalysis
photocatalyst
photoelectrochemical
Photoreduction
Solar energy
Splitting
Transition metal compounds
Two dimensional materials
Water splitting
title Recent advances in two‐dimensional transition metal dichalcogenides as photoelectrocatalyst for hydrogen evolution reaction
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T11%3A46%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Recent%20advances%20in%20two%E2%80%90dimensional%20transition%20metal%20dichalcogenides%20as%20photoelectrocatalyst%20for%20hydrogen%20evolution%20reaction&rft.jtitle=Journal%20of%20chemical%20technology%20and%20biotechnology%20(1986)&rft.au=Nguyen,%20Van%E2%80%90Huy&rft.date=2020-10&rft.volume=95&rft.issue=10&rft.spage=2597&rft.epage=2607&rft.pages=2597-2607&rft.issn=0268-2575&rft.eissn=1097-4660&rft_id=info:doi/10.1002/jctb.6335&rft_dat=%3Cproquest_cross%3E2439315369%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2439315369&rft_id=info:pmid/&rfr_iscdi=true