Study of accelerated shear creep behavior and fracture process of micro-scale ball grid array (BGA) structure Cu/Sn–3.0Ag–0.5Cu/Cu joints under coupled electro-thermo-mechanical loads

Shear creep deformation and fracture behavior of micro-scale ball grid array (BGA) structure Cu/Sn–3.0Ag–0.5Cu/Cu joints under electro-thermo-mechanical coupled loads with high-density current stressing (6.0 × 10 3 A/cm 2 ) at different temperatures (40, 60, 80, 100 and 120 °C) and various shear str...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials science. Materials in electronics 2020-09, Vol.31 (18), p.15575-15588
Hauptverfasser: Le, W. K., Zhou, J. Y., Ke, C. B., Zhou, M. B., Zhang, X. P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 15588
container_issue 18
container_start_page 15575
container_title Journal of materials science. Materials in electronics
container_volume 31
creator Le, W. K.
Zhou, J. Y.
Ke, C. B.
Zhou, M. B.
Zhang, X. P.
description Shear creep deformation and fracture behavior of micro-scale ball grid array (BGA) structure Cu/Sn–3.0Ag–0.5Cu/Cu joints under electro-thermo-mechanical coupled loads with high-density current stressing (6.0 × 10 3 A/cm 2 ) at different temperatures (40, 60, 80, 100 and 120 °C) and various shear stress levels (12.5, 15, 17.5, 20 and 22.5 MPa) were studied intensively. The results show that electric current stressing can significantly accelerate the creep deformation and fracture process of BGA solder joints in terms of increasing steady-state creep stain rate and shortening creep lifetime of the joints. Garofalo hyperbolic-sine function has shown to be a suitable creep constitutive equation, which can be well used to formulate the creep deformation behavior of micro-scale Cu/Sn–3.0Ag–0.5Cu/Cu joints under electro-thermo-mechanical coupled loads, and the equation has the increased stress exponent of 8.6 and creep activation energy of 90.8 kJ/mol, respectively. Combined theoretical analysis and experimental characterization suggest that electric current stressing leads to the change of the dominant steady-state creep deformation mechanism from dislocation climb to lattice diffusion. The interruption creep tests demonstrate that crack initiates at the interface between the solder and intermetallic compounds (IMC) near the position of electrons entering or exiting the solder matrix when the steady-state creep stage approaches the limit, and then the crack first propagates along the solder/IMC interface and gradually turns to the solder matrix under combined shear and tensile stresses. The joint fractographies exhibit a mixed brittle-ductile fracture mode with one part in the interface and the other part in the solder matrix.
doi_str_mv 10.1007/s10854-020-04121-z
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2439113048</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2439113048</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-78161345cd879710a5fbf21f04969ec61713fd008a8ecf6cc2037faa57bcbafc3</originalsourceid><addsrcrecordid>eNp9kc2KFDEUhYMo2I6-gKuAG12k5yap32Xb6CgMuBgFd-FW6qa7mupKm6QGela-g4_j28yTTMYS3Lm6EM53zr05jL2WsJYA9WWU0JSFAAUCCqmkuHvCVrKstSga9f0pW0Fb1qIolXrOXsR4AICq0M2K_b5Jc3_m3nG0lkYKmKjncU8YuA1EJ97RHm8HHzhOPXcBbZoD8VPwlmJ8BI-DDV5EiyPxDseR78LQcwwBz_zt-6vNOx5TmBdsO1_eTPc_f-k1bHZ5wrrMT9uZH_wwpcjnqacc7OfTmNfI-9iUvdOewtGLI9k9TkMO4qPHPr5kzxyOkV79nRfs28cPX7efxPWXq8_bzbWwWrZJ1I2spC5K2zd1W0vA0nVOSQdFW7VkK1lL7XqABhuyrrJWga4dYll3tkNn9QV7s_jmo3_MFJM5-DlMOdKoQrdSaiiarFKLKv9GjIGcOYXhiOFsJJjHksxSksklmT8lmbsM6QWKWTztKPyz_g_1AEp7mZ8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2439113048</pqid></control><display><type>article</type><title>Study of accelerated shear creep behavior and fracture process of micro-scale ball grid array (BGA) structure Cu/Sn–3.0Ag–0.5Cu/Cu joints under coupled electro-thermo-mechanical loads</title><source>Springer Nature - Complete Springer Journals</source><creator>Le, W. K. ; Zhou, J. Y. ; Ke, C. B. ; Zhou, M. B. ; Zhang, X. P.</creator><creatorcontrib>Le, W. K. ; Zhou, J. Y. ; Ke, C. B. ; Zhou, M. B. ; Zhang, X. P.</creatorcontrib><description>Shear creep deformation and fracture behavior of micro-scale ball grid array (BGA) structure Cu/Sn–3.0Ag–0.5Cu/Cu joints under electro-thermo-mechanical coupled loads with high-density current stressing (6.0 × 10 3 A/cm 2 ) at different temperatures (40, 60, 80, 100 and 120 °C) and various shear stress levels (12.5, 15, 17.5, 20 and 22.5 MPa) were studied intensively. The results show that electric current stressing can significantly accelerate the creep deformation and fracture process of BGA solder joints in terms of increasing steady-state creep stain rate and shortening creep lifetime of the joints. Garofalo hyperbolic-sine function has shown to be a suitable creep constitutive equation, which can be well used to formulate the creep deformation behavior of micro-scale Cu/Sn–3.0Ag–0.5Cu/Cu joints under electro-thermo-mechanical coupled loads, and the equation has the increased stress exponent of 8.6 and creep activation energy of 90.8 kJ/mol, respectively. Combined theoretical analysis and experimental characterization suggest that electric current stressing leads to the change of the dominant steady-state creep deformation mechanism from dislocation climb to lattice diffusion. The interruption creep tests demonstrate that crack initiates at the interface between the solder and intermetallic compounds (IMC) near the position of electrons entering or exiting the solder matrix when the steady-state creep stage approaches the limit, and then the crack first propagates along the solder/IMC interface and gradually turns to the solder matrix under combined shear and tensile stresses. The joint fractographies exhibit a mixed brittle-ductile fracture mode with one part in the interface and the other part in the solder matrix.</description><identifier>ISSN: 0957-4522</identifier><identifier>EISSN: 1573-482X</identifier><identifier>DOI: 10.1007/s10854-020-04121-z</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Arrays ; Ball grid packaging ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Constitutive equations ; Constitutive relationships ; Copper ; Creep strength ; Creep tests ; Deformation mechanisms ; Density currents ; Dislocation mobility ; Ductile fracture ; Ductile-brittle transition ; Electric currents ; Hyperbolic functions ; Intermetallic compounds ; Joining ; Loads (forces) ; Materials Science ; Optical and Electronic Materials ; Shear creep ; Shear stress ; Steady state creep ; Stressing ; Tin ; Tin base alloys ; Trigonometric functions</subject><ispartof>Journal of materials science. Materials in electronics, 2020-09, Vol.31 (18), p.15575-15588</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020</rights><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-78161345cd879710a5fbf21f04969ec61713fd008a8ecf6cc2037faa57bcbafc3</citedby><cites>FETCH-LOGICAL-c319t-78161345cd879710a5fbf21f04969ec61713fd008a8ecf6cc2037faa57bcbafc3</cites><orcidid>0000-0002-5181-4026</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10854-020-04121-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10854-020-04121-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51298</link.rule.ids></links><search><creatorcontrib>Le, W. K.</creatorcontrib><creatorcontrib>Zhou, J. Y.</creatorcontrib><creatorcontrib>Ke, C. B.</creatorcontrib><creatorcontrib>Zhou, M. B.</creatorcontrib><creatorcontrib>Zhang, X. P.</creatorcontrib><title>Study of accelerated shear creep behavior and fracture process of micro-scale ball grid array (BGA) structure Cu/Sn–3.0Ag–0.5Cu/Cu joints under coupled electro-thermo-mechanical loads</title><title>Journal of materials science. Materials in electronics</title><addtitle>J Mater Sci: Mater Electron</addtitle><description>Shear creep deformation and fracture behavior of micro-scale ball grid array (BGA) structure Cu/Sn–3.0Ag–0.5Cu/Cu joints under electro-thermo-mechanical coupled loads with high-density current stressing (6.0 × 10 3 A/cm 2 ) at different temperatures (40, 60, 80, 100 and 120 °C) and various shear stress levels (12.5, 15, 17.5, 20 and 22.5 MPa) were studied intensively. The results show that electric current stressing can significantly accelerate the creep deformation and fracture process of BGA solder joints in terms of increasing steady-state creep stain rate and shortening creep lifetime of the joints. Garofalo hyperbolic-sine function has shown to be a suitable creep constitutive equation, which can be well used to formulate the creep deformation behavior of micro-scale Cu/Sn–3.0Ag–0.5Cu/Cu joints under electro-thermo-mechanical coupled loads, and the equation has the increased stress exponent of 8.6 and creep activation energy of 90.8 kJ/mol, respectively. Combined theoretical analysis and experimental characterization suggest that electric current stressing leads to the change of the dominant steady-state creep deformation mechanism from dislocation climb to lattice diffusion. The interruption creep tests demonstrate that crack initiates at the interface between the solder and intermetallic compounds (IMC) near the position of electrons entering or exiting the solder matrix when the steady-state creep stage approaches the limit, and then the crack first propagates along the solder/IMC interface and gradually turns to the solder matrix under combined shear and tensile stresses. The joint fractographies exhibit a mixed brittle-ductile fracture mode with one part in the interface and the other part in the solder matrix.</description><subject>Arrays</subject><subject>Ball grid packaging</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Constitutive equations</subject><subject>Constitutive relationships</subject><subject>Copper</subject><subject>Creep strength</subject><subject>Creep tests</subject><subject>Deformation mechanisms</subject><subject>Density currents</subject><subject>Dislocation mobility</subject><subject>Ductile fracture</subject><subject>Ductile-brittle transition</subject><subject>Electric currents</subject><subject>Hyperbolic functions</subject><subject>Intermetallic compounds</subject><subject>Joining</subject><subject>Loads (forces)</subject><subject>Materials Science</subject><subject>Optical and Electronic Materials</subject><subject>Shear creep</subject><subject>Shear stress</subject><subject>Steady state creep</subject><subject>Stressing</subject><subject>Tin</subject><subject>Tin base alloys</subject><subject>Trigonometric functions</subject><issn>0957-4522</issn><issn>1573-482X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9kc2KFDEUhYMo2I6-gKuAG12k5yap32Xb6CgMuBgFd-FW6qa7mupKm6QGela-g4_j28yTTMYS3Lm6EM53zr05jL2WsJYA9WWU0JSFAAUCCqmkuHvCVrKstSga9f0pW0Fb1qIolXrOXsR4AICq0M2K_b5Jc3_m3nG0lkYKmKjncU8YuA1EJ97RHm8HHzhOPXcBbZoD8VPwlmJ8BI-DDV5EiyPxDseR78LQcwwBz_zt-6vNOx5TmBdsO1_eTPc_f-k1bHZ5wrrMT9uZH_wwpcjnqacc7OfTmNfI-9iUvdOewtGLI9k9TkMO4qPHPr5kzxyOkV79nRfs28cPX7efxPWXq8_bzbWwWrZJ1I2spC5K2zd1W0vA0nVOSQdFW7VkK1lL7XqABhuyrrJWga4dYll3tkNn9QV7s_jmo3_MFJM5-DlMOdKoQrdSaiiarFKLKv9GjIGcOYXhiOFsJJjHksxSksklmT8lmbsM6QWKWTztKPyz_g_1AEp7mZ8</recordid><startdate>20200901</startdate><enddate>20200901</enddate><creator>Le, W. K.</creator><creator>Zhou, J. Y.</creator><creator>Ke, C. B.</creator><creator>Zhou, M. B.</creator><creator>Zhang, X. P.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>S0W</scope><orcidid>https://orcid.org/0000-0002-5181-4026</orcidid></search><sort><creationdate>20200901</creationdate><title>Study of accelerated shear creep behavior and fracture process of micro-scale ball grid array (BGA) structure Cu/Sn–3.0Ag–0.5Cu/Cu joints under coupled electro-thermo-mechanical loads</title><author>Le, W. K. ; Zhou, J. Y. ; Ke, C. B. ; Zhou, M. B. ; Zhang, X. P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-78161345cd879710a5fbf21f04969ec61713fd008a8ecf6cc2037faa57bcbafc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Arrays</topic><topic>Ball grid packaging</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Constitutive equations</topic><topic>Constitutive relationships</topic><topic>Copper</topic><topic>Creep strength</topic><topic>Creep tests</topic><topic>Deformation mechanisms</topic><topic>Density currents</topic><topic>Dislocation mobility</topic><topic>Ductile fracture</topic><topic>Ductile-brittle transition</topic><topic>Electric currents</topic><topic>Hyperbolic functions</topic><topic>Intermetallic compounds</topic><topic>Joining</topic><topic>Loads (forces)</topic><topic>Materials Science</topic><topic>Optical and Electronic Materials</topic><topic>Shear creep</topic><topic>Shear stress</topic><topic>Steady state creep</topic><topic>Stressing</topic><topic>Tin</topic><topic>Tin base alloys</topic><topic>Trigonometric functions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Le, W. K.</creatorcontrib><creatorcontrib>Zhou, J. Y.</creatorcontrib><creatorcontrib>Ke, C. B.</creatorcontrib><creatorcontrib>Zhou, M. B.</creatorcontrib><creatorcontrib>Zhang, X. P.</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>DELNET Engineering &amp; Technology Collection</collection><jtitle>Journal of materials science. Materials in electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Le, W. K.</au><au>Zhou, J. Y.</au><au>Ke, C. B.</au><au>Zhou, M. B.</au><au>Zhang, X. P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Study of accelerated shear creep behavior and fracture process of micro-scale ball grid array (BGA) structure Cu/Sn–3.0Ag–0.5Cu/Cu joints under coupled electro-thermo-mechanical loads</atitle><jtitle>Journal of materials science. Materials in electronics</jtitle><stitle>J Mater Sci: Mater Electron</stitle><date>2020-09-01</date><risdate>2020</risdate><volume>31</volume><issue>18</issue><spage>15575</spage><epage>15588</epage><pages>15575-15588</pages><issn>0957-4522</issn><eissn>1573-482X</eissn><abstract>Shear creep deformation and fracture behavior of micro-scale ball grid array (BGA) structure Cu/Sn–3.0Ag–0.5Cu/Cu joints under electro-thermo-mechanical coupled loads with high-density current stressing (6.0 × 10 3 A/cm 2 ) at different temperatures (40, 60, 80, 100 and 120 °C) and various shear stress levels (12.5, 15, 17.5, 20 and 22.5 MPa) were studied intensively. The results show that electric current stressing can significantly accelerate the creep deformation and fracture process of BGA solder joints in terms of increasing steady-state creep stain rate and shortening creep lifetime of the joints. Garofalo hyperbolic-sine function has shown to be a suitable creep constitutive equation, which can be well used to formulate the creep deformation behavior of micro-scale Cu/Sn–3.0Ag–0.5Cu/Cu joints under electro-thermo-mechanical coupled loads, and the equation has the increased stress exponent of 8.6 and creep activation energy of 90.8 kJ/mol, respectively. Combined theoretical analysis and experimental characterization suggest that electric current stressing leads to the change of the dominant steady-state creep deformation mechanism from dislocation climb to lattice diffusion. The interruption creep tests demonstrate that crack initiates at the interface between the solder and intermetallic compounds (IMC) near the position of electrons entering or exiting the solder matrix when the steady-state creep stage approaches the limit, and then the crack first propagates along the solder/IMC interface and gradually turns to the solder matrix under combined shear and tensile stresses. The joint fractographies exhibit a mixed brittle-ductile fracture mode with one part in the interface and the other part in the solder matrix.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10854-020-04121-z</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-5181-4026</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0957-4522
ispartof Journal of materials science. Materials in electronics, 2020-09, Vol.31 (18), p.15575-15588
issn 0957-4522
1573-482X
language eng
recordid cdi_proquest_journals_2439113048
source Springer Nature - Complete Springer Journals
subjects Arrays
Ball grid packaging
Characterization and Evaluation of Materials
Chemistry and Materials Science
Constitutive equations
Constitutive relationships
Copper
Creep strength
Creep tests
Deformation mechanisms
Density currents
Dislocation mobility
Ductile fracture
Ductile-brittle transition
Electric currents
Hyperbolic functions
Intermetallic compounds
Joining
Loads (forces)
Materials Science
Optical and Electronic Materials
Shear creep
Shear stress
Steady state creep
Stressing
Tin
Tin base alloys
Trigonometric functions
title Study of accelerated shear creep behavior and fracture process of micro-scale ball grid array (BGA) structure Cu/Sn–3.0Ag–0.5Cu/Cu joints under coupled electro-thermo-mechanical loads
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T13%3A08%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Study%20of%20accelerated%20shear%20creep%20behavior%20and%20fracture%20process%20of%20micro-scale%20ball%20grid%20array%20(BGA)%20structure%20Cu/Sn%E2%80%933.0Ag%E2%80%930.5Cu/Cu%20joints%20under%20coupled%20electro-thermo-mechanical%20loads&rft.jtitle=Journal%20of%20materials%20science.%20Materials%20in%20electronics&rft.au=Le,%20W.%20K.&rft.date=2020-09-01&rft.volume=31&rft.issue=18&rft.spage=15575&rft.epage=15588&rft.pages=15575-15588&rft.issn=0957-4522&rft.eissn=1573-482X&rft_id=info:doi/10.1007/s10854-020-04121-z&rft_dat=%3Cproquest_cross%3E2439113048%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2439113048&rft_id=info:pmid/&rfr_iscdi=true