Study of accelerated shear creep behavior and fracture process of micro-scale ball grid array (BGA) structure Cu/Sn–3.0Ag–0.5Cu/Cu joints under coupled electro-thermo-mechanical loads
Shear creep deformation and fracture behavior of micro-scale ball grid array (BGA) structure Cu/Sn–3.0Ag–0.5Cu/Cu joints under electro-thermo-mechanical coupled loads with high-density current stressing (6.0 × 10 3 A/cm 2 ) at different temperatures (40, 60, 80, 100 and 120 °C) and various shear str...
Gespeichert in:
Veröffentlicht in: | Journal of materials science. Materials in electronics 2020-09, Vol.31 (18), p.15575-15588 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 15588 |
---|---|
container_issue | 18 |
container_start_page | 15575 |
container_title | Journal of materials science. Materials in electronics |
container_volume | 31 |
creator | Le, W. K. Zhou, J. Y. Ke, C. B. Zhou, M. B. Zhang, X. P. |
description | Shear creep deformation and fracture behavior of micro-scale ball grid array (BGA) structure Cu/Sn–3.0Ag–0.5Cu/Cu joints under electro-thermo-mechanical coupled loads with high-density current stressing (6.0 × 10
3
A/cm
2
) at different temperatures (40, 60, 80, 100 and 120 °C) and various shear stress levels (12.5, 15, 17.5, 20 and 22.5 MPa) were studied intensively. The results show that electric current stressing can significantly accelerate the creep deformation and fracture process of BGA solder joints in terms of increasing steady-state creep stain rate and shortening creep lifetime of the joints. Garofalo hyperbolic-sine function has shown to be a suitable creep constitutive equation, which can be well used to formulate the creep deformation behavior of micro-scale Cu/Sn–3.0Ag–0.5Cu/Cu joints under electro-thermo-mechanical coupled loads, and the equation has the increased stress exponent of 8.6 and creep activation energy of 90.8 kJ/mol, respectively. Combined theoretical analysis and experimental characterization suggest that electric current stressing leads to the change of the dominant steady-state creep deformation mechanism from dislocation climb to lattice diffusion. The interruption creep tests demonstrate that crack initiates at the interface between the solder and intermetallic compounds (IMC) near the position of electrons entering or exiting the solder matrix when the steady-state creep stage approaches the limit, and then the crack first propagates along the solder/IMC interface and gradually turns to the solder matrix under combined shear and tensile stresses. The joint fractographies exhibit a mixed brittle-ductile fracture mode with one part in the interface and the other part in the solder matrix. |
doi_str_mv | 10.1007/s10854-020-04121-z |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2439113048</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2439113048</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-78161345cd879710a5fbf21f04969ec61713fd008a8ecf6cc2037faa57bcbafc3</originalsourceid><addsrcrecordid>eNp9kc2KFDEUhYMo2I6-gKuAG12k5yap32Xb6CgMuBgFd-FW6qa7mupKm6QGela-g4_j28yTTMYS3Lm6EM53zr05jL2WsJYA9WWU0JSFAAUCCqmkuHvCVrKstSga9f0pW0Fb1qIolXrOXsR4AICq0M2K_b5Jc3_m3nG0lkYKmKjncU8YuA1EJ97RHm8HHzhOPXcBbZoD8VPwlmJ8BI-DDV5EiyPxDseR78LQcwwBz_zt-6vNOx5TmBdsO1_eTPc_f-k1bHZ5wrrMT9uZH_wwpcjnqacc7OfTmNfI-9iUvdOewtGLI9k9TkMO4qPHPr5kzxyOkV79nRfs28cPX7efxPWXq8_bzbWwWrZJ1I2spC5K2zd1W0vA0nVOSQdFW7VkK1lL7XqABhuyrrJWga4dYll3tkNn9QV7s_jmo3_MFJM5-DlMOdKoQrdSaiiarFKLKv9GjIGcOYXhiOFsJJjHksxSksklmT8lmbsM6QWKWTztKPyz_g_1AEp7mZ8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2439113048</pqid></control><display><type>article</type><title>Study of accelerated shear creep behavior and fracture process of micro-scale ball grid array (BGA) structure Cu/Sn–3.0Ag–0.5Cu/Cu joints under coupled electro-thermo-mechanical loads</title><source>Springer Nature - Complete Springer Journals</source><creator>Le, W. K. ; Zhou, J. Y. ; Ke, C. B. ; Zhou, M. B. ; Zhang, X. P.</creator><creatorcontrib>Le, W. K. ; Zhou, J. Y. ; Ke, C. B. ; Zhou, M. B. ; Zhang, X. P.</creatorcontrib><description>Shear creep deformation and fracture behavior of micro-scale ball grid array (BGA) structure Cu/Sn–3.0Ag–0.5Cu/Cu joints under electro-thermo-mechanical coupled loads with high-density current stressing (6.0 × 10
3
A/cm
2
) at different temperatures (40, 60, 80, 100 and 120 °C) and various shear stress levels (12.5, 15, 17.5, 20 and 22.5 MPa) were studied intensively. The results show that electric current stressing can significantly accelerate the creep deformation and fracture process of BGA solder joints in terms of increasing steady-state creep stain rate and shortening creep lifetime of the joints. Garofalo hyperbolic-sine function has shown to be a suitable creep constitutive equation, which can be well used to formulate the creep deformation behavior of micro-scale Cu/Sn–3.0Ag–0.5Cu/Cu joints under electro-thermo-mechanical coupled loads, and the equation has the increased stress exponent of 8.6 and creep activation energy of 90.8 kJ/mol, respectively. Combined theoretical analysis and experimental characterization suggest that electric current stressing leads to the change of the dominant steady-state creep deformation mechanism from dislocation climb to lattice diffusion. The interruption creep tests demonstrate that crack initiates at the interface between the solder and intermetallic compounds (IMC) near the position of electrons entering or exiting the solder matrix when the steady-state creep stage approaches the limit, and then the crack first propagates along the solder/IMC interface and gradually turns to the solder matrix under combined shear and tensile stresses. The joint fractographies exhibit a mixed brittle-ductile fracture mode with one part in the interface and the other part in the solder matrix.</description><identifier>ISSN: 0957-4522</identifier><identifier>EISSN: 1573-482X</identifier><identifier>DOI: 10.1007/s10854-020-04121-z</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Arrays ; Ball grid packaging ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Constitutive equations ; Constitutive relationships ; Copper ; Creep strength ; Creep tests ; Deformation mechanisms ; Density currents ; Dislocation mobility ; Ductile fracture ; Ductile-brittle transition ; Electric currents ; Hyperbolic functions ; Intermetallic compounds ; Joining ; Loads (forces) ; Materials Science ; Optical and Electronic Materials ; Shear creep ; Shear stress ; Steady state creep ; Stressing ; Tin ; Tin base alloys ; Trigonometric functions</subject><ispartof>Journal of materials science. Materials in electronics, 2020-09, Vol.31 (18), p.15575-15588</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020</rights><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-78161345cd879710a5fbf21f04969ec61713fd008a8ecf6cc2037faa57bcbafc3</citedby><cites>FETCH-LOGICAL-c319t-78161345cd879710a5fbf21f04969ec61713fd008a8ecf6cc2037faa57bcbafc3</cites><orcidid>0000-0002-5181-4026</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10854-020-04121-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10854-020-04121-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51298</link.rule.ids></links><search><creatorcontrib>Le, W. K.</creatorcontrib><creatorcontrib>Zhou, J. Y.</creatorcontrib><creatorcontrib>Ke, C. B.</creatorcontrib><creatorcontrib>Zhou, M. B.</creatorcontrib><creatorcontrib>Zhang, X. P.</creatorcontrib><title>Study of accelerated shear creep behavior and fracture process of micro-scale ball grid array (BGA) structure Cu/Sn–3.0Ag–0.5Cu/Cu joints under coupled electro-thermo-mechanical loads</title><title>Journal of materials science. Materials in electronics</title><addtitle>J Mater Sci: Mater Electron</addtitle><description>Shear creep deformation and fracture behavior of micro-scale ball grid array (BGA) structure Cu/Sn–3.0Ag–0.5Cu/Cu joints under electro-thermo-mechanical coupled loads with high-density current stressing (6.0 × 10
3
A/cm
2
) at different temperatures (40, 60, 80, 100 and 120 °C) and various shear stress levels (12.5, 15, 17.5, 20 and 22.5 MPa) were studied intensively. The results show that electric current stressing can significantly accelerate the creep deformation and fracture process of BGA solder joints in terms of increasing steady-state creep stain rate and shortening creep lifetime of the joints. Garofalo hyperbolic-sine function has shown to be a suitable creep constitutive equation, which can be well used to formulate the creep deformation behavior of micro-scale Cu/Sn–3.0Ag–0.5Cu/Cu joints under electro-thermo-mechanical coupled loads, and the equation has the increased stress exponent of 8.6 and creep activation energy of 90.8 kJ/mol, respectively. Combined theoretical analysis and experimental characterization suggest that electric current stressing leads to the change of the dominant steady-state creep deformation mechanism from dislocation climb to lattice diffusion. The interruption creep tests demonstrate that crack initiates at the interface between the solder and intermetallic compounds (IMC) near the position of electrons entering or exiting the solder matrix when the steady-state creep stage approaches the limit, and then the crack first propagates along the solder/IMC interface and gradually turns to the solder matrix under combined shear and tensile stresses. The joint fractographies exhibit a mixed brittle-ductile fracture mode with one part in the interface and the other part in the solder matrix.</description><subject>Arrays</subject><subject>Ball grid packaging</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Constitutive equations</subject><subject>Constitutive relationships</subject><subject>Copper</subject><subject>Creep strength</subject><subject>Creep tests</subject><subject>Deformation mechanisms</subject><subject>Density currents</subject><subject>Dislocation mobility</subject><subject>Ductile fracture</subject><subject>Ductile-brittle transition</subject><subject>Electric currents</subject><subject>Hyperbolic functions</subject><subject>Intermetallic compounds</subject><subject>Joining</subject><subject>Loads (forces)</subject><subject>Materials Science</subject><subject>Optical and Electronic Materials</subject><subject>Shear creep</subject><subject>Shear stress</subject><subject>Steady state creep</subject><subject>Stressing</subject><subject>Tin</subject><subject>Tin base alloys</subject><subject>Trigonometric functions</subject><issn>0957-4522</issn><issn>1573-482X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9kc2KFDEUhYMo2I6-gKuAG12k5yap32Xb6CgMuBgFd-FW6qa7mupKm6QGela-g4_j28yTTMYS3Lm6EM53zr05jL2WsJYA9WWU0JSFAAUCCqmkuHvCVrKstSga9f0pW0Fb1qIolXrOXsR4AICq0M2K_b5Jc3_m3nG0lkYKmKjncU8YuA1EJ97RHm8HHzhOPXcBbZoD8VPwlmJ8BI-DDV5EiyPxDseR78LQcwwBz_zt-6vNOx5TmBdsO1_eTPc_f-k1bHZ5wrrMT9uZH_wwpcjnqacc7OfTmNfI-9iUvdOewtGLI9k9TkMO4qPHPr5kzxyOkV79nRfs28cPX7efxPWXq8_bzbWwWrZJ1I2spC5K2zd1W0vA0nVOSQdFW7VkK1lL7XqABhuyrrJWga4dYll3tkNn9QV7s_jmo3_MFJM5-DlMOdKoQrdSaiiarFKLKv9GjIGcOYXhiOFsJJjHksxSksklmT8lmbsM6QWKWTztKPyz_g_1AEp7mZ8</recordid><startdate>20200901</startdate><enddate>20200901</enddate><creator>Le, W. K.</creator><creator>Zhou, J. Y.</creator><creator>Ke, C. B.</creator><creator>Zhou, M. B.</creator><creator>Zhang, X. P.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>S0W</scope><orcidid>https://orcid.org/0000-0002-5181-4026</orcidid></search><sort><creationdate>20200901</creationdate><title>Study of accelerated shear creep behavior and fracture process of micro-scale ball grid array (BGA) structure Cu/Sn–3.0Ag–0.5Cu/Cu joints under coupled electro-thermo-mechanical loads</title><author>Le, W. K. ; Zhou, J. Y. ; Ke, C. B. ; Zhou, M. B. ; Zhang, X. P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-78161345cd879710a5fbf21f04969ec61713fd008a8ecf6cc2037faa57bcbafc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Arrays</topic><topic>Ball grid packaging</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Constitutive equations</topic><topic>Constitutive relationships</topic><topic>Copper</topic><topic>Creep strength</topic><topic>Creep tests</topic><topic>Deformation mechanisms</topic><topic>Density currents</topic><topic>Dislocation mobility</topic><topic>Ductile fracture</topic><topic>Ductile-brittle transition</topic><topic>Electric currents</topic><topic>Hyperbolic functions</topic><topic>Intermetallic compounds</topic><topic>Joining</topic><topic>Loads (forces)</topic><topic>Materials Science</topic><topic>Optical and Electronic Materials</topic><topic>Shear creep</topic><topic>Shear stress</topic><topic>Steady state creep</topic><topic>Stressing</topic><topic>Tin</topic><topic>Tin base alloys</topic><topic>Trigonometric functions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Le, W. K.</creatorcontrib><creatorcontrib>Zhou, J. Y.</creatorcontrib><creatorcontrib>Ke, C. B.</creatorcontrib><creatorcontrib>Zhou, M. B.</creatorcontrib><creatorcontrib>Zhang, X. P.</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>DELNET Engineering & Technology Collection</collection><jtitle>Journal of materials science. Materials in electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Le, W. K.</au><au>Zhou, J. Y.</au><au>Ke, C. B.</au><au>Zhou, M. B.</au><au>Zhang, X. P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Study of accelerated shear creep behavior and fracture process of micro-scale ball grid array (BGA) structure Cu/Sn–3.0Ag–0.5Cu/Cu joints under coupled electro-thermo-mechanical loads</atitle><jtitle>Journal of materials science. Materials in electronics</jtitle><stitle>J Mater Sci: Mater Electron</stitle><date>2020-09-01</date><risdate>2020</risdate><volume>31</volume><issue>18</issue><spage>15575</spage><epage>15588</epage><pages>15575-15588</pages><issn>0957-4522</issn><eissn>1573-482X</eissn><abstract>Shear creep deformation and fracture behavior of micro-scale ball grid array (BGA) structure Cu/Sn–3.0Ag–0.5Cu/Cu joints under electro-thermo-mechanical coupled loads with high-density current stressing (6.0 × 10
3
A/cm
2
) at different temperatures (40, 60, 80, 100 and 120 °C) and various shear stress levels (12.5, 15, 17.5, 20 and 22.5 MPa) were studied intensively. The results show that electric current stressing can significantly accelerate the creep deformation and fracture process of BGA solder joints in terms of increasing steady-state creep stain rate and shortening creep lifetime of the joints. Garofalo hyperbolic-sine function has shown to be a suitable creep constitutive equation, which can be well used to formulate the creep deformation behavior of micro-scale Cu/Sn–3.0Ag–0.5Cu/Cu joints under electro-thermo-mechanical coupled loads, and the equation has the increased stress exponent of 8.6 and creep activation energy of 90.8 kJ/mol, respectively. Combined theoretical analysis and experimental characterization suggest that electric current stressing leads to the change of the dominant steady-state creep deformation mechanism from dislocation climb to lattice diffusion. The interruption creep tests demonstrate that crack initiates at the interface between the solder and intermetallic compounds (IMC) near the position of electrons entering or exiting the solder matrix when the steady-state creep stage approaches the limit, and then the crack first propagates along the solder/IMC interface and gradually turns to the solder matrix under combined shear and tensile stresses. The joint fractographies exhibit a mixed brittle-ductile fracture mode with one part in the interface and the other part in the solder matrix.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10854-020-04121-z</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-5181-4026</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0957-4522 |
ispartof | Journal of materials science. Materials in electronics, 2020-09, Vol.31 (18), p.15575-15588 |
issn | 0957-4522 1573-482X |
language | eng |
recordid | cdi_proquest_journals_2439113048 |
source | Springer Nature - Complete Springer Journals |
subjects | Arrays Ball grid packaging Characterization and Evaluation of Materials Chemistry and Materials Science Constitutive equations Constitutive relationships Copper Creep strength Creep tests Deformation mechanisms Density currents Dislocation mobility Ductile fracture Ductile-brittle transition Electric currents Hyperbolic functions Intermetallic compounds Joining Loads (forces) Materials Science Optical and Electronic Materials Shear creep Shear stress Steady state creep Stressing Tin Tin base alloys Trigonometric functions |
title | Study of accelerated shear creep behavior and fracture process of micro-scale ball grid array (BGA) structure Cu/Sn–3.0Ag–0.5Cu/Cu joints under coupled electro-thermo-mechanical loads |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T13%3A08%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Study%20of%20accelerated%20shear%20creep%20behavior%20and%20fracture%20process%20of%20micro-scale%20ball%20grid%20array%20(BGA)%20structure%20Cu/Sn%E2%80%933.0Ag%E2%80%930.5Cu/Cu%20joints%20under%20coupled%20electro-thermo-mechanical%20loads&rft.jtitle=Journal%20of%20materials%20science.%20Materials%20in%20electronics&rft.au=Le,%20W.%20K.&rft.date=2020-09-01&rft.volume=31&rft.issue=18&rft.spage=15575&rft.epage=15588&rft.pages=15575-15588&rft.issn=0957-4522&rft.eissn=1573-482X&rft_id=info:doi/10.1007/s10854-020-04121-z&rft_dat=%3Cproquest_cross%3E2439113048%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2439113048&rft_id=info:pmid/&rfr_iscdi=true |