Hand-generated piezoelectric mechanical-to-electrical energy conversion plasma
A transient spark discharge is an atmospheric pressure plasma that has applications in pollutant removal, medicine, water treatment, agriculture, bactericides, and nanomaterial synthesis. Conventional methods of generating transient sparks at atmospheric pressure usually require a high voltage input...
Gespeichert in:
Veröffentlicht in: | Applied physics letters 2020-08, Vol.117 (9) |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 9 |
container_start_page | |
container_title | Applied physics letters |
container_volume | 117 |
creator | Jaenicke, Olivia K. Hita Martínez, Federico G. Yang, Jinyu Im, Seong-kyun Go, David B. |
description | A transient spark discharge is an atmospheric pressure plasma that has applications in pollutant removal, medicine, water treatment, agriculture, bactericides, and nanomaterial synthesis. Conventional methods of generating transient sparks at atmospheric pressure usually require a high voltage input at nanosecond pulses. Piezoelectric crystals offer a path to creating plasma devices that do not require a high voltage power supply to generate high voltage outputs; they directly transform mechanical energy into electrical energy. This work examines a manually-operated piezoelectric mechanical-to-electrical energy conversion plasma device. Electrical characterization of the plasma discharge generated by this device shows that it behaves as a transient spark, discharging 0.96 mJ over approximately 30 ns, with consistent behavior across multiple consecutive discharges. Although this specific device had a low mechanical-to-plasma energy conversion efficiency of 1.54%, the piezoelectric crystal resets to an equilibrium condition after approximately 8 μs, which suggests that it could be operated with a mechanical input of up to nearly 125 kHz. This work shows the potential of generating plasma in off-the-grid situations using piezoelectric crystals. One particular application of a piezoelectric plasma device is for in situ pollution mitigation or plasma-enhanced combustion, embedding such a device on the high-frequency oscillating or rotating components of internal combustion engines and turbomachinery. |
doi_str_mv | 10.1063/5.0018967 |
format | Article |
fullrecord | <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_journals_2439099128</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2439099128</sourcerecordid><originalsourceid>FETCH-LOGICAL-c362t-a75c8a5d61e5677251de696b13b96334ffa74ca9fcdfa41bb24da873ae96e093</originalsourceid><addsrcrecordid>eNp90FFLwzAQB_AgCs7pg9-g4JNCZtI0SfMoQ50w9GXv4ZpeZ0fX1KQbzE9vx6Y-CD4dd_y44_6EXHM24UyJezlhjOdG6RMy4kxrKjjPT8mIMSaoMpKfk4sYV0MrUyFG5HUGbUmX2GKAHsukq_HTY4OuD7VL1ujeoa0dNLT39HsMTbL3y13ifLvFEGvfJl0DcQ2X5KyCJuLVsY7J4ulxMZ3R-dvzy_RhTp1QaU9BS5eDLBVHqbROJS9RGVVwURglRFZVoDMHpnJlBRkvijQrIdcC0ChkRozJzWFtF_zHBmNvV34T2uGiTTNhmDE8zQd1e1Au-BgDVrYL9RrCznJm92lZaY9pDfbuYKOre-iHj37w1odfaLuy-g__3fwFS5d5Rw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2439099128</pqid></control><display><type>article</type><title>Hand-generated piezoelectric mechanical-to-electrical energy conversion plasma</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Jaenicke, Olivia K. ; Hita Martínez, Federico G. ; Yang, Jinyu ; Im, Seong-kyun ; Go, David B.</creator><creatorcontrib>Jaenicke, Olivia K. ; Hita Martínez, Federico G. ; Yang, Jinyu ; Im, Seong-kyun ; Go, David B.</creatorcontrib><description>A transient spark discharge is an atmospheric pressure plasma that has applications in pollutant removal, medicine, water treatment, agriculture, bactericides, and nanomaterial synthesis. Conventional methods of generating transient sparks at atmospheric pressure usually require a high voltage input at nanosecond pulses. Piezoelectric crystals offer a path to creating plasma devices that do not require a high voltage power supply to generate high voltage outputs; they directly transform mechanical energy into electrical energy. This work examines a manually-operated piezoelectric mechanical-to-electrical energy conversion plasma device. Electrical characterization of the plasma discharge generated by this device shows that it behaves as a transient spark, discharging 0.96 mJ over approximately 30 ns, with consistent behavior across multiple consecutive discharges. Although this specific device had a low mechanical-to-plasma energy conversion efficiency of 1.54%, the piezoelectric crystal resets to an equilibrium condition after approximately 8 μs, which suggests that it could be operated with a mechanical input of up to nearly 125 kHz. This work shows the potential of generating plasma in off-the-grid situations using piezoelectric crystals. One particular application of a piezoelectric plasma device is for in situ pollution mitigation or plasma-enhanced combustion, embedding such a device on the high-frequency oscillating or rotating components of internal combustion engines and turbomachinery.</description><identifier>ISSN: 0003-6951</identifier><identifier>EISSN: 1077-3118</identifier><identifier>DOI: 10.1063/5.0018967</identifier><identifier>CODEN: APPLAB</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Applied physics ; Atmospheric pressure ; Bactericides ; Electric power supplies ; Electric sparks ; Electrical properties ; Energy conversion efficiency ; High voltages ; Internal combustion engines ; Nanomaterials ; Nanosecond pulses ; Piezoelectric crystals ; Plasma ; Plasma jets ; Pollutants ; Turbomachinery ; Water pollution ; Water treatment</subject><ispartof>Applied physics letters, 2020-08, Vol.117 (9)</ispartof><rights>Author(s)</rights><rights>2020 Author(s). Published under license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c362t-a75c8a5d61e5677251de696b13b96334ffa74ca9fcdfa41bb24da873ae96e093</citedby><cites>FETCH-LOGICAL-c362t-a75c8a5d61e5677251de696b13b96334ffa74ca9fcdfa41bb24da873ae96e093</cites><orcidid>0000-0002-7449-4336 ; 0000-0001-8948-1442 ; 0000-0003-4304-2289</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/apl/article-lookup/doi/10.1063/5.0018967$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,777,781,791,4498,27905,27906,76133</link.rule.ids></links><search><creatorcontrib>Jaenicke, Olivia K.</creatorcontrib><creatorcontrib>Hita Martínez, Federico G.</creatorcontrib><creatorcontrib>Yang, Jinyu</creatorcontrib><creatorcontrib>Im, Seong-kyun</creatorcontrib><creatorcontrib>Go, David B.</creatorcontrib><title>Hand-generated piezoelectric mechanical-to-electrical energy conversion plasma</title><title>Applied physics letters</title><description>A transient spark discharge is an atmospheric pressure plasma that has applications in pollutant removal, medicine, water treatment, agriculture, bactericides, and nanomaterial synthesis. Conventional methods of generating transient sparks at atmospheric pressure usually require a high voltage input at nanosecond pulses. Piezoelectric crystals offer a path to creating plasma devices that do not require a high voltage power supply to generate high voltage outputs; they directly transform mechanical energy into electrical energy. This work examines a manually-operated piezoelectric mechanical-to-electrical energy conversion plasma device. Electrical characterization of the plasma discharge generated by this device shows that it behaves as a transient spark, discharging 0.96 mJ over approximately 30 ns, with consistent behavior across multiple consecutive discharges. Although this specific device had a low mechanical-to-plasma energy conversion efficiency of 1.54%, the piezoelectric crystal resets to an equilibrium condition after approximately 8 μs, which suggests that it could be operated with a mechanical input of up to nearly 125 kHz. This work shows the potential of generating plasma in off-the-grid situations using piezoelectric crystals. One particular application of a piezoelectric plasma device is for in situ pollution mitigation or plasma-enhanced combustion, embedding such a device on the high-frequency oscillating or rotating components of internal combustion engines and turbomachinery.</description><subject>Applied physics</subject><subject>Atmospheric pressure</subject><subject>Bactericides</subject><subject>Electric power supplies</subject><subject>Electric sparks</subject><subject>Electrical properties</subject><subject>Energy conversion efficiency</subject><subject>High voltages</subject><subject>Internal combustion engines</subject><subject>Nanomaterials</subject><subject>Nanosecond pulses</subject><subject>Piezoelectric crystals</subject><subject>Plasma</subject><subject>Plasma jets</subject><subject>Pollutants</subject><subject>Turbomachinery</subject><subject>Water pollution</subject><subject>Water treatment</subject><issn>0003-6951</issn><issn>1077-3118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp90FFLwzAQB_AgCs7pg9-g4JNCZtI0SfMoQ50w9GXv4ZpeZ0fX1KQbzE9vx6Y-CD4dd_y44_6EXHM24UyJezlhjOdG6RMy4kxrKjjPT8mIMSaoMpKfk4sYV0MrUyFG5HUGbUmX2GKAHsukq_HTY4OuD7VL1ujeoa0dNLT39HsMTbL3y13ifLvFEGvfJl0DcQ2X5KyCJuLVsY7J4ulxMZ3R-dvzy_RhTp1QaU9BS5eDLBVHqbROJS9RGVVwURglRFZVoDMHpnJlBRkvijQrIdcC0ChkRozJzWFtF_zHBmNvV34T2uGiTTNhmDE8zQd1e1Au-BgDVrYL9RrCznJm92lZaY9pDfbuYKOre-iHj37w1odfaLuy-g__3fwFS5d5Rw</recordid><startdate>20200831</startdate><enddate>20200831</enddate><creator>Jaenicke, Olivia K.</creator><creator>Hita Martínez, Federico G.</creator><creator>Yang, Jinyu</creator><creator>Im, Seong-kyun</creator><creator>Go, David B.</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-7449-4336</orcidid><orcidid>https://orcid.org/0000-0001-8948-1442</orcidid><orcidid>https://orcid.org/0000-0003-4304-2289</orcidid></search><sort><creationdate>20200831</creationdate><title>Hand-generated piezoelectric mechanical-to-electrical energy conversion plasma</title><author>Jaenicke, Olivia K. ; Hita Martínez, Federico G. ; Yang, Jinyu ; Im, Seong-kyun ; Go, David B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c362t-a75c8a5d61e5677251de696b13b96334ffa74ca9fcdfa41bb24da873ae96e093</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Applied physics</topic><topic>Atmospheric pressure</topic><topic>Bactericides</topic><topic>Electric power supplies</topic><topic>Electric sparks</topic><topic>Electrical properties</topic><topic>Energy conversion efficiency</topic><topic>High voltages</topic><topic>Internal combustion engines</topic><topic>Nanomaterials</topic><topic>Nanosecond pulses</topic><topic>Piezoelectric crystals</topic><topic>Plasma</topic><topic>Plasma jets</topic><topic>Pollutants</topic><topic>Turbomachinery</topic><topic>Water pollution</topic><topic>Water treatment</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jaenicke, Olivia K.</creatorcontrib><creatorcontrib>Hita Martínez, Federico G.</creatorcontrib><creatorcontrib>Yang, Jinyu</creatorcontrib><creatorcontrib>Im, Seong-kyun</creatorcontrib><creatorcontrib>Go, David B.</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Applied physics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jaenicke, Olivia K.</au><au>Hita Martínez, Federico G.</au><au>Yang, Jinyu</au><au>Im, Seong-kyun</au><au>Go, David B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hand-generated piezoelectric mechanical-to-electrical energy conversion plasma</atitle><jtitle>Applied physics letters</jtitle><date>2020-08-31</date><risdate>2020</risdate><volume>117</volume><issue>9</issue><issn>0003-6951</issn><eissn>1077-3118</eissn><coden>APPLAB</coden><abstract>A transient spark discharge is an atmospheric pressure plasma that has applications in pollutant removal, medicine, water treatment, agriculture, bactericides, and nanomaterial synthesis. Conventional methods of generating transient sparks at atmospheric pressure usually require a high voltage input at nanosecond pulses. Piezoelectric crystals offer a path to creating plasma devices that do not require a high voltage power supply to generate high voltage outputs; they directly transform mechanical energy into electrical energy. This work examines a manually-operated piezoelectric mechanical-to-electrical energy conversion plasma device. Electrical characterization of the plasma discharge generated by this device shows that it behaves as a transient spark, discharging 0.96 mJ over approximately 30 ns, with consistent behavior across multiple consecutive discharges. Although this specific device had a low mechanical-to-plasma energy conversion efficiency of 1.54%, the piezoelectric crystal resets to an equilibrium condition after approximately 8 μs, which suggests that it could be operated with a mechanical input of up to nearly 125 kHz. This work shows the potential of generating plasma in off-the-grid situations using piezoelectric crystals. One particular application of a piezoelectric plasma device is for in situ pollution mitigation or plasma-enhanced combustion, embedding such a device on the high-frequency oscillating or rotating components of internal combustion engines and turbomachinery.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0018967</doi><tpages>4</tpages><orcidid>https://orcid.org/0000-0002-7449-4336</orcidid><orcidid>https://orcid.org/0000-0001-8948-1442</orcidid><orcidid>https://orcid.org/0000-0003-4304-2289</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0003-6951 |
ispartof | Applied physics letters, 2020-08, Vol.117 (9) |
issn | 0003-6951 1077-3118 |
language | eng |
recordid | cdi_proquest_journals_2439099128 |
source | AIP Journals Complete; Alma/SFX Local Collection |
subjects | Applied physics Atmospheric pressure Bactericides Electric power supplies Electric sparks Electrical properties Energy conversion efficiency High voltages Internal combustion engines Nanomaterials Nanosecond pulses Piezoelectric crystals Plasma Plasma jets Pollutants Turbomachinery Water pollution Water treatment |
title | Hand-generated piezoelectric mechanical-to-electrical energy conversion plasma |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T05%3A44%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hand-generated%20piezoelectric%20mechanical-to-electrical%20energy%20conversion%20plasma&rft.jtitle=Applied%20physics%20letters&rft.au=Jaenicke,%20Olivia%20K.&rft.date=2020-08-31&rft.volume=117&rft.issue=9&rft.issn=0003-6951&rft.eissn=1077-3118&rft.coden=APPLAB&rft_id=info:doi/10.1063/5.0018967&rft_dat=%3Cproquest_scita%3E2439099128%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2439099128&rft_id=info:pmid/&rfr_iscdi=true |