An extended trajectory-mechanics approach for calculating two-phase flow paths

A technique originating in quantum dynamics is used to derive a trajectory-based, semi-analytical solution for two-phase flow. The partial differential equation governing the evolution of the aqueous phase is equivalent to a family of ordinary differential equations defined along a path through the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:AIP advances 2020-09, Vol.10 (9), p.095205-095205-13
1. Verfasser: Vasco, D. W.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 095205-13
container_issue 9
container_start_page 095205
container_title AIP advances
container_volume 10
creator Vasco, D. W.
description A technique originating in quantum dynamics is used to derive a trajectory-based, semi-analytical solution for two-phase flow. The partial differential equation governing the evolution of the aqueous phase is equivalent to a family of ordinary differential equations defined along a path through the porous medium. The trajectories may be found by solving the differential equations directly or by post-processing the output of a numerical solution to the full set of governing equations. The trajectories, which differ from conventional streamlines, are found to bend downward in response to gravitational forces. The curvature is more pronounced as the dip of the porous layer containing the flow increases. Subtle changes in the relative permeability curve can lead to significant variations in the trajectories. The ordinary differential equation for the trajectory provides an expression for the travel time along the path. The expression produces a semi-analytical approximation to the model parameter sensitivities, the partial derivatives of the travel times with respect to changes in the permeability model. The semi-analytical trajectory-based sensitivities generally agree with those computed using a numerical reservoir simulator and a perturbation approach. The sensitivities are useful in tomographic imaging algorithms designed to estimate the spatial variation in permeability within a porous medium using multiphase observations.
doi_str_mv 10.1063/5.0017504
format Article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_proquest_journals_2439099062</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_6c05be0b491149d2a41a2e65059f3c33</doaj_id><sourcerecordid>2439099062</sourcerecordid><originalsourceid>FETCH-LOGICAL-c380t-a0e6433db6b84f9f00996fb335fc52a447095ccce719bee8026a4418684459813</originalsourceid><addsrcrecordid>eNp9kU1LxDAQhosouKgH_0HRk0J18rnNcVn8AtGLnkM6TdwutalJFvXfG-0insxlwvDwzrzvFMUxgQsCkl2KCwAyF8B3ihkloq4YpXL3z3-_OIpxDflxRaDms-JhMZT2I9mhtW2ZgllbTD58Vq8WV2boMJZmHIM3uCqdDyWaHje9Sd3wUqZ3X40rE23pev9ejiat4mGx50wf7dG2HhTP11dPy9vq_vHmbrm4r5DVkCoDVnLG2kY2NXfKASglXcOYcCio4XwOSiCinRPVWFsDlblJallzLlRN2EFxN-m23qz1GLpXEz61N53-afjwok1IHfZWSwTRWGiyY8JVm9WJoVYKEMoxZCxrnUxaPqZOR-xS9o5-GHIUmkgxp1Jl6HSCchhvGxuTXvtNGLJHTTlTeX-QNFNnE4XBxxis-12NgP4-kRZ6e6LMnk_s98ScqB_-gb8AGteNlg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2439099062</pqid></control><display><type>article</type><title>An extended trajectory-mechanics approach for calculating two-phase flow paths</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Vasco, D. W.</creator><creatorcontrib>Vasco, D. W.</creatorcontrib><description>A technique originating in quantum dynamics is used to derive a trajectory-based, semi-analytical solution for two-phase flow. The partial differential equation governing the evolution of the aqueous phase is equivalent to a family of ordinary differential equations defined along a path through the porous medium. The trajectories may be found by solving the differential equations directly or by post-processing the output of a numerical solution to the full set of governing equations. The trajectories, which differ from conventional streamlines, are found to bend downward in response to gravitational forces. The curvature is more pronounced as the dip of the porous layer containing the flow increases. Subtle changes in the relative permeability curve can lead to significant variations in the trajectories. The ordinary differential equation for the trajectory provides an expression for the travel time along the path. The expression produces a semi-analytical approximation to the model parameter sensitivities, the partial derivatives of the travel times with respect to changes in the permeability model. The semi-analytical trajectory-based sensitivities generally agree with those computed using a numerical reservoir simulator and a perturbation approach. The sensitivities are useful in tomographic imaging algorithms designed to estimate the spatial variation in permeability within a porous medium using multiphase observations.</description><identifier>ISSN: 2158-3226</identifier><identifier>EISSN: 2158-3226</identifier><identifier>DOI: 10.1063/5.0017504</identifier><identifier>CODEN: AAIDBI</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Algorithms ; Computer simulation ; Exact solutions ; Flow paths ; Mathematical models ; Ordinary differential equations ; Parameter sensitivity ; Partial differential equations ; Permeability ; Perturbation methods ; Porous media ; Post-processing ; Sensitivity analysis ; Trajectory analysis ; Travel time ; Two phase flow</subject><ispartof>AIP advances, 2020-09, Vol.10 (9), p.095205-095205-13</ispartof><rights>Author(s)</rights><rights>2020 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c380t-a0e6433db6b84f9f00996fb335fc52a447095ccce719bee8026a4418684459813</cites><orcidid>0000-0003-1210-8628 ; 0000000312108628</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,864,885,2102,27924,27925</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1657269$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Vasco, D. W.</creatorcontrib><title>An extended trajectory-mechanics approach for calculating two-phase flow paths</title><title>AIP advances</title><description>A technique originating in quantum dynamics is used to derive a trajectory-based, semi-analytical solution for two-phase flow. The partial differential equation governing the evolution of the aqueous phase is equivalent to a family of ordinary differential equations defined along a path through the porous medium. The trajectories may be found by solving the differential equations directly or by post-processing the output of a numerical solution to the full set of governing equations. The trajectories, which differ from conventional streamlines, are found to bend downward in response to gravitational forces. The curvature is more pronounced as the dip of the porous layer containing the flow increases. Subtle changes in the relative permeability curve can lead to significant variations in the trajectories. The ordinary differential equation for the trajectory provides an expression for the travel time along the path. The expression produces a semi-analytical approximation to the model parameter sensitivities, the partial derivatives of the travel times with respect to changes in the permeability model. The semi-analytical trajectory-based sensitivities generally agree with those computed using a numerical reservoir simulator and a perturbation approach. The sensitivities are useful in tomographic imaging algorithms designed to estimate the spatial variation in permeability within a porous medium using multiphase observations.</description><subject>Algorithms</subject><subject>Computer simulation</subject><subject>Exact solutions</subject><subject>Flow paths</subject><subject>Mathematical models</subject><subject>Ordinary differential equations</subject><subject>Parameter sensitivity</subject><subject>Partial differential equations</subject><subject>Permeability</subject><subject>Perturbation methods</subject><subject>Porous media</subject><subject>Post-processing</subject><subject>Sensitivity analysis</subject><subject>Trajectory analysis</subject><subject>Travel time</subject><subject>Two phase flow</subject><issn>2158-3226</issn><issn>2158-3226</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNp9kU1LxDAQhosouKgH_0HRk0J18rnNcVn8AtGLnkM6TdwutalJFvXfG-0insxlwvDwzrzvFMUxgQsCkl2KCwAyF8B3ihkloq4YpXL3z3-_OIpxDflxRaDms-JhMZT2I9mhtW2ZgllbTD58Vq8WV2boMJZmHIM3uCqdDyWaHje9Sd3wUqZ3X40rE23pev9ejiat4mGx50wf7dG2HhTP11dPy9vq_vHmbrm4r5DVkCoDVnLG2kY2NXfKASglXcOYcCio4XwOSiCinRPVWFsDlblJallzLlRN2EFxN-m23qz1GLpXEz61N53-afjwok1IHfZWSwTRWGiyY8JVm9WJoVYKEMoxZCxrnUxaPqZOR-xS9o5-GHIUmkgxp1Jl6HSCchhvGxuTXvtNGLJHTTlTeX-QNFNnE4XBxxis-12NgP4-kRZ6e6LMnk_s98ScqB_-gb8AGteNlg</recordid><startdate>20200901</startdate><enddate>20200901</enddate><creator>Vasco, D. W.</creator><general>American Institute of Physics</general><general>AIP Publishing LLC</general><scope>AJDQP</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>OTOTI</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-1210-8628</orcidid><orcidid>https://orcid.org/0000000312108628</orcidid></search><sort><creationdate>20200901</creationdate><title>An extended trajectory-mechanics approach for calculating two-phase flow paths</title><author>Vasco, D. W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c380t-a0e6433db6b84f9f00996fb335fc52a447095ccce719bee8026a4418684459813</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Computer simulation</topic><topic>Exact solutions</topic><topic>Flow paths</topic><topic>Mathematical models</topic><topic>Ordinary differential equations</topic><topic>Parameter sensitivity</topic><topic>Partial differential equations</topic><topic>Permeability</topic><topic>Perturbation methods</topic><topic>Porous media</topic><topic>Post-processing</topic><topic>Sensitivity analysis</topic><topic>Trajectory analysis</topic><topic>Travel time</topic><topic>Two phase flow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vasco, D. W.</creatorcontrib><collection>AIP Open Access Journals</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>AIP advances</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vasco, D. W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An extended trajectory-mechanics approach for calculating two-phase flow paths</atitle><jtitle>AIP advances</jtitle><date>2020-09-01</date><risdate>2020</risdate><volume>10</volume><issue>9</issue><spage>095205</spage><epage>095205-13</epage><pages>095205-095205-13</pages><issn>2158-3226</issn><eissn>2158-3226</eissn><coden>AAIDBI</coden><abstract>A technique originating in quantum dynamics is used to derive a trajectory-based, semi-analytical solution for two-phase flow. The partial differential equation governing the evolution of the aqueous phase is equivalent to a family of ordinary differential equations defined along a path through the porous medium. The trajectories may be found by solving the differential equations directly or by post-processing the output of a numerical solution to the full set of governing equations. The trajectories, which differ from conventional streamlines, are found to bend downward in response to gravitational forces. The curvature is more pronounced as the dip of the porous layer containing the flow increases. Subtle changes in the relative permeability curve can lead to significant variations in the trajectories. The ordinary differential equation for the trajectory provides an expression for the travel time along the path. The expression produces a semi-analytical approximation to the model parameter sensitivities, the partial derivatives of the travel times with respect to changes in the permeability model. The semi-analytical trajectory-based sensitivities generally agree with those computed using a numerical reservoir simulator and a perturbation approach. The sensitivities are useful in tomographic imaging algorithms designed to estimate the spatial variation in permeability within a porous medium using multiphase observations.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0017504</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-1210-8628</orcidid><orcidid>https://orcid.org/0000000312108628</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2158-3226
ispartof AIP advances, 2020-09, Vol.10 (9), p.095205-095205-13
issn 2158-3226
2158-3226
language eng
recordid cdi_proquest_journals_2439099062
source DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Algorithms
Computer simulation
Exact solutions
Flow paths
Mathematical models
Ordinary differential equations
Parameter sensitivity
Partial differential equations
Permeability
Perturbation methods
Porous media
Post-processing
Sensitivity analysis
Trajectory analysis
Travel time
Two phase flow
title An extended trajectory-mechanics approach for calculating two-phase flow paths
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T18%3A09%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20extended%20trajectory-mechanics%20approach%20for%20calculating%20two-phase%20flow%20paths&rft.jtitle=AIP%20advances&rft.au=Vasco,%20D.%20W.&rft.date=2020-09-01&rft.volume=10&rft.issue=9&rft.spage=095205&rft.epage=095205-13&rft.pages=095205-095205-13&rft.issn=2158-3226&rft.eissn=2158-3226&rft.coden=AAIDBI&rft_id=info:doi/10.1063/5.0017504&rft_dat=%3Cproquest_doaj_%3E2439099062%3C/proquest_doaj_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2439099062&rft_id=info:pmid/&rft_doaj_id=oai_doaj_org_article_6c05be0b491149d2a41a2e65059f3c33&rfr_iscdi=true