The use of combined Landsat and Radarsat data for urban ecosystem accounting in Canada
This paper describes an approach for combining Landsat and Radarsat satellite images to generate national statistics for urban ecosystem accounting. These accounts will inform policy related to the development of mitigation measures for climatic and hydrologic events in Canada. Milton, Ontario was u...
Gespeichert in:
Veröffentlicht in: | Statistical journal of the IAOS 2020, Vol.36 (3), p.823-839 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 839 |
---|---|
container_issue | 3 |
container_start_page | 823 |
container_title | Statistical journal of the IAOS |
container_volume | 36 |
creator | Grenier, Marcelle Lantz, Nicholas Soulard, François Wang, Jennie |
description | This paper describes an approach for combining Landsat and Radarsat satellite images to generate national statistics for urban ecosystem accounting. These accounts will inform policy related to the development of mitigation measures for climatic and hydrologic events in Canada. Milton, Ontario was used as a test case for the development of an approach identifying urban ecosystem types and assessing change from 2001 to 2019. Methods included decomposition of Radarsat images into polarimetric parameters to test their usefulness in characterizing urban areas. Geographic object-based image analysis (GEOBIA) was used to identify urban ecosystem types following an existing classification of local climate zones. Three supervised classifiers: decision tree, random forest and support vector machine, were compared for their accuracy in mapping urban ecosystems. Ancillary geospatial datasets on roads, buildings, and Landsat-based vegetation were used to better characterize individual ecosystem assets. Change detection focused on the occurrence of changes that can impact ecosystem service supply – i.e., conversions from less to more built-up urban types. Results demonstrate that combining Radarsat polarimetric parameters with the Landsat images improved urban characterization using the GEOBIA random forest classifier. This approach for mapping urban ecosystem types provides a practical method for measuring and monitoring changes in urban areas. |
doi_str_mv | 10.3233/SJI-200663 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2439043586</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2439043586</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2433-83fef137a1a837d074673b88d7510cf0ce511f1472a852d461ade0d0aa716f293</originalsourceid><addsrcrecordid>eNotkEtLAzEUhYMoWKsbf0HAnTCadzJLKT4qBUGr23Cbh06xSU1mFv33Tq2rcw-cew58CF1ScsMZ57dvz_OGEaIUP0ITarRsWibF8d8tGq2kPEVnta4Jka0WYoI-ll8BDzXgHLHLm1WXgscLSL5Cj0fBr-Ch7I2HHnDMBQ9lBQkHl-uu9mGDwbk8pL5Ln7hLeAZp_DhHJxG-a7j41yl6f7hfzp6axcvjfHa3aBwTnDeGxxAp10DBcO2JFkrzlTFeS0pcJC5ISiMVmoGRzAtFwQfiCYCmKrKWT9HVoXdb8s8Qam_XeShpnLTjQEsEl0aNqetDypVcawnRbku3gbKzlNg9Nztyswdu_BdlS15t</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2439043586</pqid></control><display><type>article</type><title>The use of combined Landsat and Radarsat data for urban ecosystem accounting in Canada</title><source>EBSCOhost Business Source Complete</source><creator>Grenier, Marcelle ; Lantz, Nicholas ; Soulard, François ; Wang, Jennie</creator><creatorcontrib>Grenier, Marcelle ; Lantz, Nicholas ; Soulard, François ; Wang, Jennie</creatorcontrib><description>This paper describes an approach for combining Landsat and Radarsat satellite images to generate national statistics for urban ecosystem accounting. These accounts will inform policy related to the development of mitigation measures for climatic and hydrologic events in Canada. Milton, Ontario was used as a test case for the development of an approach identifying urban ecosystem types and assessing change from 2001 to 2019. Methods included decomposition of Radarsat images into polarimetric parameters to test their usefulness in characterizing urban areas. Geographic object-based image analysis (GEOBIA) was used to identify urban ecosystem types following an existing classification of local climate zones. Three supervised classifiers: decision tree, random forest and support vector machine, were compared for their accuracy in mapping urban ecosystems. Ancillary geospatial datasets on roads, buildings, and Landsat-based vegetation were used to better characterize individual ecosystem assets. Change detection focused on the occurrence of changes that can impact ecosystem service supply – i.e., conversions from less to more built-up urban types. Results demonstrate that combining Radarsat polarimetric parameters with the Landsat images improved urban characterization using the GEOBIA random forest classifier. This approach for mapping urban ecosystem types provides a practical method for measuring and monitoring changes in urban areas.</description><identifier>ISSN: 1874-7655</identifier><identifier>EISSN: 1875-9254</identifier><identifier>DOI: 10.3233/SJI-200663</identifier><language>eng</language><publisher>Amsterdam: IOS Press BV</publisher><subject>Change detection ; Classifiers ; Decision trees ; Ecosystems ; Hydrology ; Image analysis ; Landsat satellites ; Mapping ; Parameters ; Polarimetry ; Radar imaging ; Radarsat ; Satellite imagery ; Support vector machines ; Urban areas</subject><ispartof>Statistical journal of the IAOS, 2020, Vol.36 (3), p.823-839</ispartof><rights>Copyright IOS Press BV 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2433-83fef137a1a837d074673b88d7510cf0ce511f1472a852d461ade0d0aa716f293</citedby><cites>FETCH-LOGICAL-c2433-83fef137a1a837d074673b88d7510cf0ce511f1472a852d461ade0d0aa716f293</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,4024,27923,27924,27925</link.rule.ids></links><search><creatorcontrib>Grenier, Marcelle</creatorcontrib><creatorcontrib>Lantz, Nicholas</creatorcontrib><creatorcontrib>Soulard, François</creatorcontrib><creatorcontrib>Wang, Jennie</creatorcontrib><title>The use of combined Landsat and Radarsat data for urban ecosystem accounting in Canada</title><title>Statistical journal of the IAOS</title><description>This paper describes an approach for combining Landsat and Radarsat satellite images to generate national statistics for urban ecosystem accounting. These accounts will inform policy related to the development of mitigation measures for climatic and hydrologic events in Canada. Milton, Ontario was used as a test case for the development of an approach identifying urban ecosystem types and assessing change from 2001 to 2019. Methods included decomposition of Radarsat images into polarimetric parameters to test their usefulness in characterizing urban areas. Geographic object-based image analysis (GEOBIA) was used to identify urban ecosystem types following an existing classification of local climate zones. Three supervised classifiers: decision tree, random forest and support vector machine, were compared for their accuracy in mapping urban ecosystems. Ancillary geospatial datasets on roads, buildings, and Landsat-based vegetation were used to better characterize individual ecosystem assets. Change detection focused on the occurrence of changes that can impact ecosystem service supply – i.e., conversions from less to more built-up urban types. Results demonstrate that combining Radarsat polarimetric parameters with the Landsat images improved urban characterization using the GEOBIA random forest classifier. This approach for mapping urban ecosystem types provides a practical method for measuring and monitoring changes in urban areas.</description><subject>Change detection</subject><subject>Classifiers</subject><subject>Decision trees</subject><subject>Ecosystems</subject><subject>Hydrology</subject><subject>Image analysis</subject><subject>Landsat satellites</subject><subject>Mapping</subject><subject>Parameters</subject><subject>Polarimetry</subject><subject>Radar imaging</subject><subject>Radarsat</subject><subject>Satellite imagery</subject><subject>Support vector machines</subject><subject>Urban areas</subject><issn>1874-7655</issn><issn>1875-9254</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNotkEtLAzEUhYMoWKsbf0HAnTCadzJLKT4qBUGr23Cbh06xSU1mFv33Tq2rcw-cew58CF1ScsMZ57dvz_OGEaIUP0ITarRsWibF8d8tGq2kPEVnta4Jka0WYoI-ll8BDzXgHLHLm1WXgscLSL5Cj0fBr-Ch7I2HHnDMBQ9lBQkHl-uu9mGDwbk8pL5Ln7hLeAZp_DhHJxG-a7j41yl6f7hfzp6axcvjfHa3aBwTnDeGxxAp10DBcO2JFkrzlTFeS0pcJC5ISiMVmoGRzAtFwQfiCYCmKrKWT9HVoXdb8s8Qam_XeShpnLTjQEsEl0aNqetDypVcawnRbku3gbKzlNg9Nztyswdu_BdlS15t</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Grenier, Marcelle</creator><creator>Lantz, Nicholas</creator><creator>Soulard, François</creator><creator>Wang, Jennie</creator><general>IOS Press BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>2020</creationdate><title>The use of combined Landsat and Radarsat data for urban ecosystem accounting in Canada</title><author>Grenier, Marcelle ; Lantz, Nicholas ; Soulard, François ; Wang, Jennie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2433-83fef137a1a837d074673b88d7510cf0ce511f1472a852d461ade0d0aa716f293</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Change detection</topic><topic>Classifiers</topic><topic>Decision trees</topic><topic>Ecosystems</topic><topic>Hydrology</topic><topic>Image analysis</topic><topic>Landsat satellites</topic><topic>Mapping</topic><topic>Parameters</topic><topic>Polarimetry</topic><topic>Radar imaging</topic><topic>Radarsat</topic><topic>Satellite imagery</topic><topic>Support vector machines</topic><topic>Urban areas</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Grenier, Marcelle</creatorcontrib><creatorcontrib>Lantz, Nicholas</creatorcontrib><creatorcontrib>Soulard, François</creatorcontrib><creatorcontrib>Wang, Jennie</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Statistical journal of the IAOS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Grenier, Marcelle</au><au>Lantz, Nicholas</au><au>Soulard, François</au><au>Wang, Jennie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The use of combined Landsat and Radarsat data for urban ecosystem accounting in Canada</atitle><jtitle>Statistical journal of the IAOS</jtitle><date>2020</date><risdate>2020</risdate><volume>36</volume><issue>3</issue><spage>823</spage><epage>839</epage><pages>823-839</pages><issn>1874-7655</issn><eissn>1875-9254</eissn><abstract>This paper describes an approach for combining Landsat and Radarsat satellite images to generate national statistics for urban ecosystem accounting. These accounts will inform policy related to the development of mitigation measures for climatic and hydrologic events in Canada. Milton, Ontario was used as a test case for the development of an approach identifying urban ecosystem types and assessing change from 2001 to 2019. Methods included decomposition of Radarsat images into polarimetric parameters to test their usefulness in characterizing urban areas. Geographic object-based image analysis (GEOBIA) was used to identify urban ecosystem types following an existing classification of local climate zones. Three supervised classifiers: decision tree, random forest and support vector machine, were compared for their accuracy in mapping urban ecosystems. Ancillary geospatial datasets on roads, buildings, and Landsat-based vegetation were used to better characterize individual ecosystem assets. Change detection focused on the occurrence of changes that can impact ecosystem service supply – i.e., conversions from less to more built-up urban types. Results demonstrate that combining Radarsat polarimetric parameters with the Landsat images improved urban characterization using the GEOBIA random forest classifier. This approach for mapping urban ecosystem types provides a practical method for measuring and monitoring changes in urban areas.</abstract><cop>Amsterdam</cop><pub>IOS Press BV</pub><doi>10.3233/SJI-200663</doi><tpages>17</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1874-7655 |
ispartof | Statistical journal of the IAOS, 2020, Vol.36 (3), p.823-839 |
issn | 1874-7655 1875-9254 |
language | eng |
recordid | cdi_proquest_journals_2439043586 |
source | EBSCOhost Business Source Complete |
subjects | Change detection Classifiers Decision trees Ecosystems Hydrology Image analysis Landsat satellites Mapping Parameters Polarimetry Radar imaging Radarsat Satellite imagery Support vector machines Urban areas |
title | The use of combined Landsat and Radarsat data for urban ecosystem accounting in Canada |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T03%3A06%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20use%20of%20combined%20Landsat%20and%20Radarsat%20data%20for%20urban%20ecosystem%20accounting%20in%20Canada&rft.jtitle=Statistical%20journal%20of%20the%20IAOS&rft.au=Grenier,%20Marcelle&rft.date=2020&rft.volume=36&rft.issue=3&rft.spage=823&rft.epage=839&rft.pages=823-839&rft.issn=1874-7655&rft.eissn=1875-9254&rft_id=info:doi/10.3233/SJI-200663&rft_dat=%3Cproquest_cross%3E2439043586%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2439043586&rft_id=info:pmid/&rfr_iscdi=true |