Business data collection methodology: Current state and future outlook
Collecting data from businesses faces ever-larger challenges, some of them calling for an overhaul of underlying methodology, e.g. motivation for participating is low; technology is shaping data collection processes; response processes within businesses are imperfectly understood while alternative d...
Gespeichert in:
Veröffentlicht in: | Statistical journal of the IAOS 2020, Vol.36 (3), p.741-756 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 756 |
---|---|
container_issue | 3 |
container_start_page | 741 |
container_title | Statistical journal of the IAOS |
container_volume | 36 |
creator | Bavdaž, Mojca Snijkers, Ger Sakshaug, Joseph W. Brand, Türknur Haraldsen, Gustav Kurban, Bilal Saraiva, Paulo Willimack, Diane K. |
description | Collecting data from businesses faces ever-larger challenges, some of them calling for an overhaul of underlying methodology, e.g. motivation for participating is low; technology is shaping data collection processes; response processes within businesses are imperfectly understood while alternative data sources originating from digitalization processes push the response process (thus also response quality) further out of our sight. The paper reviews these challenges, discusses them in light of new developments in the field, and proposes directions for future research. This review may help those that collect data from businesses (e.g. national statistical institutes, academia, and private statistical agencies) to reconsider their current approaches in light of what promises to work (or not) in today’s environment and to build their toolkit of business data collection methods. |
doi_str_mv | 10.3233/SJI-200623 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2439043543</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2439043543</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2433-1e01a0ffff4d03f24e2c38965a6b08edec7bd4ef3453cb5ead5763a27b7b96823</originalsourceid><addsrcrecordid>eNotkD1PwzAURS0EEqWw8AsssSEFHD87TtigaqGoEgMwW479Ai1pXPwx9N8TKG-5b7i6RzqEXJbsBjjA7evzsuCMVRyOyKSslSwaLsXx3y8KVUl5Ss5i3DAmGyXEhCweclwPGCN1Jhlqfd-jTWs_0C2mT-987z_2d3SWQ8Ah0ZhMQmoGR7ucckDqc-q9_zonJ53pI17855S8L-Zvs6di9fK4nN2vCssFQFEiKw3rxhOOQccFcgt1U0lTtaxGh1a1TmAHQoJtJRonVQWGq1a1TVVzmJKrw-4u-O-MMemNz2EYkXoENEyAHDlTcn1o2eBjDNjpXVhvTdjrkulfT3r0pA-e4AdVulrx</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2439043543</pqid></control><display><type>article</type><title>Business data collection methodology: Current state and future outlook</title><source>Business Source Complete</source><creator>Bavdaž, Mojca ; Snijkers, Ger ; Sakshaug, Joseph W. ; Brand, Türknur ; Haraldsen, Gustav ; Kurban, Bilal ; Saraiva, Paulo ; Willimack, Diane K.</creator><creatorcontrib>Bavdaž, Mojca ; Snijkers, Ger ; Sakshaug, Joseph W. ; Brand, Türknur ; Haraldsen, Gustav ; Kurban, Bilal ; Saraiva, Paulo ; Willimack, Diane K.</creatorcontrib><description>Collecting data from businesses faces ever-larger challenges, some of them calling for an overhaul of underlying methodology, e.g. motivation for participating is low; technology is shaping data collection processes; response processes within businesses are imperfectly understood while alternative data sources originating from digitalization processes push the response process (thus also response quality) further out of our sight. The paper reviews these challenges, discusses them in light of new developments in the field, and proposes directions for future research. This review may help those that collect data from businesses (e.g. national statistical institutes, academia, and private statistical agencies) to reconsider their current approaches in light of what promises to work (or not) in today’s environment and to build their toolkit of business data collection methods.</description><identifier>ISSN: 1874-7655</identifier><identifier>EISSN: 1875-9254</identifier><identifier>DOI: 10.3233/SJI-200623</identifier><language>eng</language><publisher>Amsterdam: IOS Press BV</publisher><subject>Data collection ; Digitization ; Toolkits</subject><ispartof>Statistical journal of the IAOS, 2020, Vol.36 (3), p.741-756</ispartof><rights>Copyright IOS Press BV 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2433-1e01a0ffff4d03f24e2c38965a6b08edec7bd4ef3453cb5ead5763a27b7b96823</citedby><cites>FETCH-LOGICAL-c2433-1e01a0ffff4d03f24e2c38965a6b08edec7bd4ef3453cb5ead5763a27b7b96823</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,4022,27922,27923,27924</link.rule.ids></links><search><creatorcontrib>Bavdaž, Mojca</creatorcontrib><creatorcontrib>Snijkers, Ger</creatorcontrib><creatorcontrib>Sakshaug, Joseph W.</creatorcontrib><creatorcontrib>Brand, Türknur</creatorcontrib><creatorcontrib>Haraldsen, Gustav</creatorcontrib><creatorcontrib>Kurban, Bilal</creatorcontrib><creatorcontrib>Saraiva, Paulo</creatorcontrib><creatorcontrib>Willimack, Diane K.</creatorcontrib><title>Business data collection methodology: Current state and future outlook</title><title>Statistical journal of the IAOS</title><description>Collecting data from businesses faces ever-larger challenges, some of them calling for an overhaul of underlying methodology, e.g. motivation for participating is low; technology is shaping data collection processes; response processes within businesses are imperfectly understood while alternative data sources originating from digitalization processes push the response process (thus also response quality) further out of our sight. The paper reviews these challenges, discusses them in light of new developments in the field, and proposes directions for future research. This review may help those that collect data from businesses (e.g. national statistical institutes, academia, and private statistical agencies) to reconsider their current approaches in light of what promises to work (or not) in today’s environment and to build their toolkit of business data collection methods.</description><subject>Data collection</subject><subject>Digitization</subject><subject>Toolkits</subject><issn>1874-7655</issn><issn>1875-9254</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNotkD1PwzAURS0EEqWw8AsssSEFHD87TtigaqGoEgMwW479Ai1pXPwx9N8TKG-5b7i6RzqEXJbsBjjA7evzsuCMVRyOyKSslSwaLsXx3y8KVUl5Ss5i3DAmGyXEhCweclwPGCN1Jhlqfd-jTWs_0C2mT-987z_2d3SWQ8Ah0ZhMQmoGR7ucckDqc-q9_zonJ53pI17855S8L-Zvs6di9fK4nN2vCssFQFEiKw3rxhOOQccFcgt1U0lTtaxGh1a1TmAHQoJtJRonVQWGq1a1TVVzmJKrw-4u-O-MMemNz2EYkXoENEyAHDlTcn1o2eBjDNjpXVhvTdjrkulfT3r0pA-e4AdVulrx</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Bavdaž, Mojca</creator><creator>Snijkers, Ger</creator><creator>Sakshaug, Joseph W.</creator><creator>Brand, Türknur</creator><creator>Haraldsen, Gustav</creator><creator>Kurban, Bilal</creator><creator>Saraiva, Paulo</creator><creator>Willimack, Diane K.</creator><general>IOS Press BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>2020</creationdate><title>Business data collection methodology: Current state and future outlook</title><author>Bavdaž, Mojca ; Snijkers, Ger ; Sakshaug, Joseph W. ; Brand, Türknur ; Haraldsen, Gustav ; Kurban, Bilal ; Saraiva, Paulo ; Willimack, Diane K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2433-1e01a0ffff4d03f24e2c38965a6b08edec7bd4ef3453cb5ead5763a27b7b96823</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Data collection</topic><topic>Digitization</topic><topic>Toolkits</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bavdaž, Mojca</creatorcontrib><creatorcontrib>Snijkers, Ger</creatorcontrib><creatorcontrib>Sakshaug, Joseph W.</creatorcontrib><creatorcontrib>Brand, Türknur</creatorcontrib><creatorcontrib>Haraldsen, Gustav</creatorcontrib><creatorcontrib>Kurban, Bilal</creatorcontrib><creatorcontrib>Saraiva, Paulo</creatorcontrib><creatorcontrib>Willimack, Diane K.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Statistical journal of the IAOS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bavdaž, Mojca</au><au>Snijkers, Ger</au><au>Sakshaug, Joseph W.</au><au>Brand, Türknur</au><au>Haraldsen, Gustav</au><au>Kurban, Bilal</au><au>Saraiva, Paulo</au><au>Willimack, Diane K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Business data collection methodology: Current state and future outlook</atitle><jtitle>Statistical journal of the IAOS</jtitle><date>2020</date><risdate>2020</risdate><volume>36</volume><issue>3</issue><spage>741</spage><epage>756</epage><pages>741-756</pages><issn>1874-7655</issn><eissn>1875-9254</eissn><abstract>Collecting data from businesses faces ever-larger challenges, some of them calling for an overhaul of underlying methodology, e.g. motivation for participating is low; technology is shaping data collection processes; response processes within businesses are imperfectly understood while alternative data sources originating from digitalization processes push the response process (thus also response quality) further out of our sight. The paper reviews these challenges, discusses them in light of new developments in the field, and proposes directions for future research. This review may help those that collect data from businesses (e.g. national statistical institutes, academia, and private statistical agencies) to reconsider their current approaches in light of what promises to work (or not) in today’s environment and to build their toolkit of business data collection methods.</abstract><cop>Amsterdam</cop><pub>IOS Press BV</pub><doi>10.3233/SJI-200623</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1874-7655 |
ispartof | Statistical journal of the IAOS, 2020, Vol.36 (3), p.741-756 |
issn | 1874-7655 1875-9254 |
language | eng |
recordid | cdi_proquest_journals_2439043543 |
source | Business Source Complete |
subjects | Data collection Digitization Toolkits |
title | Business data collection methodology: Current state and future outlook |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T20%3A34%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Business%20data%20collection%20methodology:%20Current%20state%20and%20future%20outlook&rft.jtitle=Statistical%20journal%20of%20the%20IAOS&rft.au=Bavda%C5%BE,%20Mojca&rft.date=2020&rft.volume=36&rft.issue=3&rft.spage=741&rft.epage=756&rft.pages=741-756&rft.issn=1874-7655&rft.eissn=1875-9254&rft_id=info:doi/10.3233/SJI-200623&rft_dat=%3Cproquest_cross%3E2439043543%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2439043543&rft_id=info:pmid/&rfr_iscdi=true |