Business data collection methodology: Current state and future outlook

Collecting data from businesses faces ever-larger challenges, some of them calling for an overhaul of underlying methodology, e.g. motivation for participating is low; technology is shaping data collection processes; response processes within businesses are imperfectly understood while alternative d...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Statistical journal of the IAOS 2020, Vol.36 (3), p.741-756
Hauptverfasser: Bavdaž, Mojca, Snijkers, Ger, Sakshaug, Joseph W., Brand, Türknur, Haraldsen, Gustav, Kurban, Bilal, Saraiva, Paulo, Willimack, Diane K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 756
container_issue 3
container_start_page 741
container_title Statistical journal of the IAOS
container_volume 36
creator Bavdaž, Mojca
Snijkers, Ger
Sakshaug, Joseph W.
Brand, Türknur
Haraldsen, Gustav
Kurban, Bilal
Saraiva, Paulo
Willimack, Diane K.
description Collecting data from businesses faces ever-larger challenges, some of them calling for an overhaul of underlying methodology, e.g. motivation for participating is low; technology is shaping data collection processes; response processes within businesses are imperfectly understood while alternative data sources originating from digitalization processes push the response process (thus also response quality) further out of our sight. The paper reviews these challenges, discusses them in light of new developments in the field, and proposes directions for future research. This review may help those that collect data from businesses (e.g. national statistical institutes, academia, and private statistical agencies) to reconsider their current approaches in light of what promises to work (or not) in today’s environment and to build their toolkit of business data collection methods.
doi_str_mv 10.3233/SJI-200623
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2439043543</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2439043543</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2433-1e01a0ffff4d03f24e2c38965a6b08edec7bd4ef3453cb5ead5763a27b7b96823</originalsourceid><addsrcrecordid>eNotkD1PwzAURS0EEqWw8AsssSEFHD87TtigaqGoEgMwW479Ai1pXPwx9N8TKG-5b7i6RzqEXJbsBjjA7evzsuCMVRyOyKSslSwaLsXx3y8KVUl5Ss5i3DAmGyXEhCweclwPGCN1Jhlqfd-jTWs_0C2mT-987z_2d3SWQ8Ah0ZhMQmoGR7ucckDqc-q9_zonJ53pI17855S8L-Zvs6di9fK4nN2vCssFQFEiKw3rxhOOQccFcgt1U0lTtaxGh1a1TmAHQoJtJRonVQWGq1a1TVVzmJKrw-4u-O-MMemNz2EYkXoENEyAHDlTcn1o2eBjDNjpXVhvTdjrkulfT3r0pA-e4AdVulrx</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2439043543</pqid></control><display><type>article</type><title>Business data collection methodology: Current state and future outlook</title><source>Business Source Complete</source><creator>Bavdaž, Mojca ; Snijkers, Ger ; Sakshaug, Joseph W. ; Brand, Türknur ; Haraldsen, Gustav ; Kurban, Bilal ; Saraiva, Paulo ; Willimack, Diane K.</creator><creatorcontrib>Bavdaž, Mojca ; Snijkers, Ger ; Sakshaug, Joseph W. ; Brand, Türknur ; Haraldsen, Gustav ; Kurban, Bilal ; Saraiva, Paulo ; Willimack, Diane K.</creatorcontrib><description>Collecting data from businesses faces ever-larger challenges, some of them calling for an overhaul of underlying methodology, e.g. motivation for participating is low; technology is shaping data collection processes; response processes within businesses are imperfectly understood while alternative data sources originating from digitalization processes push the response process (thus also response quality) further out of our sight. The paper reviews these challenges, discusses them in light of new developments in the field, and proposes directions for future research. This review may help those that collect data from businesses (e.g. national statistical institutes, academia, and private statistical agencies) to reconsider their current approaches in light of what promises to work (or not) in today’s environment and to build their toolkit of business data collection methods.</description><identifier>ISSN: 1874-7655</identifier><identifier>EISSN: 1875-9254</identifier><identifier>DOI: 10.3233/SJI-200623</identifier><language>eng</language><publisher>Amsterdam: IOS Press BV</publisher><subject>Data collection ; Digitization ; Toolkits</subject><ispartof>Statistical journal of the IAOS, 2020, Vol.36 (3), p.741-756</ispartof><rights>Copyright IOS Press BV 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2433-1e01a0ffff4d03f24e2c38965a6b08edec7bd4ef3453cb5ead5763a27b7b96823</citedby><cites>FETCH-LOGICAL-c2433-1e01a0ffff4d03f24e2c38965a6b08edec7bd4ef3453cb5ead5763a27b7b96823</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,4022,27922,27923,27924</link.rule.ids></links><search><creatorcontrib>Bavdaž, Mojca</creatorcontrib><creatorcontrib>Snijkers, Ger</creatorcontrib><creatorcontrib>Sakshaug, Joseph W.</creatorcontrib><creatorcontrib>Brand, Türknur</creatorcontrib><creatorcontrib>Haraldsen, Gustav</creatorcontrib><creatorcontrib>Kurban, Bilal</creatorcontrib><creatorcontrib>Saraiva, Paulo</creatorcontrib><creatorcontrib>Willimack, Diane K.</creatorcontrib><title>Business data collection methodology: Current state and future outlook</title><title>Statistical journal of the IAOS</title><description>Collecting data from businesses faces ever-larger challenges, some of them calling for an overhaul of underlying methodology, e.g. motivation for participating is low; technology is shaping data collection processes; response processes within businesses are imperfectly understood while alternative data sources originating from digitalization processes push the response process (thus also response quality) further out of our sight. The paper reviews these challenges, discusses them in light of new developments in the field, and proposes directions for future research. This review may help those that collect data from businesses (e.g. national statistical institutes, academia, and private statistical agencies) to reconsider their current approaches in light of what promises to work (or not) in today’s environment and to build their toolkit of business data collection methods.</description><subject>Data collection</subject><subject>Digitization</subject><subject>Toolkits</subject><issn>1874-7655</issn><issn>1875-9254</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNotkD1PwzAURS0EEqWw8AsssSEFHD87TtigaqGoEgMwW479Ai1pXPwx9N8TKG-5b7i6RzqEXJbsBjjA7evzsuCMVRyOyKSslSwaLsXx3y8KVUl5Ss5i3DAmGyXEhCweclwPGCN1Jhlqfd-jTWs_0C2mT-987z_2d3SWQ8Ah0ZhMQmoGR7ucckDqc-q9_zonJ53pI17855S8L-Zvs6di9fK4nN2vCssFQFEiKw3rxhOOQccFcgt1U0lTtaxGh1a1TmAHQoJtJRonVQWGq1a1TVVzmJKrw-4u-O-MMemNz2EYkXoENEyAHDlTcn1o2eBjDNjpXVhvTdjrkulfT3r0pA-e4AdVulrx</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Bavdaž, Mojca</creator><creator>Snijkers, Ger</creator><creator>Sakshaug, Joseph W.</creator><creator>Brand, Türknur</creator><creator>Haraldsen, Gustav</creator><creator>Kurban, Bilal</creator><creator>Saraiva, Paulo</creator><creator>Willimack, Diane K.</creator><general>IOS Press BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>2020</creationdate><title>Business data collection methodology: Current state and future outlook</title><author>Bavdaž, Mojca ; Snijkers, Ger ; Sakshaug, Joseph W. ; Brand, Türknur ; Haraldsen, Gustav ; Kurban, Bilal ; Saraiva, Paulo ; Willimack, Diane K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2433-1e01a0ffff4d03f24e2c38965a6b08edec7bd4ef3453cb5ead5763a27b7b96823</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Data collection</topic><topic>Digitization</topic><topic>Toolkits</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bavdaž, Mojca</creatorcontrib><creatorcontrib>Snijkers, Ger</creatorcontrib><creatorcontrib>Sakshaug, Joseph W.</creatorcontrib><creatorcontrib>Brand, Türknur</creatorcontrib><creatorcontrib>Haraldsen, Gustav</creatorcontrib><creatorcontrib>Kurban, Bilal</creatorcontrib><creatorcontrib>Saraiva, Paulo</creatorcontrib><creatorcontrib>Willimack, Diane K.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Statistical journal of the IAOS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bavdaž, Mojca</au><au>Snijkers, Ger</au><au>Sakshaug, Joseph W.</au><au>Brand, Türknur</au><au>Haraldsen, Gustav</au><au>Kurban, Bilal</au><au>Saraiva, Paulo</au><au>Willimack, Diane K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Business data collection methodology: Current state and future outlook</atitle><jtitle>Statistical journal of the IAOS</jtitle><date>2020</date><risdate>2020</risdate><volume>36</volume><issue>3</issue><spage>741</spage><epage>756</epage><pages>741-756</pages><issn>1874-7655</issn><eissn>1875-9254</eissn><abstract>Collecting data from businesses faces ever-larger challenges, some of them calling for an overhaul of underlying methodology, e.g. motivation for participating is low; technology is shaping data collection processes; response processes within businesses are imperfectly understood while alternative data sources originating from digitalization processes push the response process (thus also response quality) further out of our sight. The paper reviews these challenges, discusses them in light of new developments in the field, and proposes directions for future research. This review may help those that collect data from businesses (e.g. national statistical institutes, academia, and private statistical agencies) to reconsider their current approaches in light of what promises to work (or not) in today’s environment and to build their toolkit of business data collection methods.</abstract><cop>Amsterdam</cop><pub>IOS Press BV</pub><doi>10.3233/SJI-200623</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1874-7655
ispartof Statistical journal of the IAOS, 2020, Vol.36 (3), p.741-756
issn 1874-7655
1875-9254
language eng
recordid cdi_proquest_journals_2439043543
source Business Source Complete
subjects Data collection
Digitization
Toolkits
title Business data collection methodology: Current state and future outlook
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T20%3A34%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Business%20data%20collection%20methodology:%20Current%20state%20and%20future%20outlook&rft.jtitle=Statistical%20journal%20of%20the%20IAOS&rft.au=Bavda%C5%BE,%20Mojca&rft.date=2020&rft.volume=36&rft.issue=3&rft.spage=741&rft.epage=756&rft.pages=741-756&rft.issn=1874-7655&rft.eissn=1875-9254&rft_id=info:doi/10.3233/SJI-200623&rft_dat=%3Cproquest_cross%3E2439043543%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2439043543&rft_id=info:pmid/&rfr_iscdi=true