Simulation of primary particle size distributions in a premixed ethylene stagnation flame
Numerical simulation of soot formation in a laminar premixed burner-stabilized ethylene stagnation flame was performed with a detailed population balance model (DPBM) capable of tracking full structural details of aggregates as well as their chemical composition. A thorough parametric sensitivity st...
Gespeichert in:
Veröffentlicht in: | Combustion and flame 2020-06, Vol.216, p.126-135 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 135 |
---|---|
container_issue | |
container_start_page | 126 |
container_title | Combustion and flame |
container_volume | 216 |
creator | Hou, Dingyu Lindberg, Casper S. Wang, Mengda Manuputty, Manoel Y. You, Xiaoqing Kraft, Markus |
description | Numerical simulation of soot formation in a laminar premixed burner-stabilized ethylene stagnation flame was performed with a detailed population balance model (DPBM) capable of tracking full structural details of aggregates as well as their chemical composition. A thorough parametric sensitivity study was carried out to understand the influence of individual sooting processes on the computed primary particle size distributions (PPSDs). The rate of production of pyrene, coagulation efficiency and surface growth rate were found to have significant effects on the computed PPSDs. Besides, we found that the instantaneous sintering between small primary particles (PP) can affect the computed PPSDs drastically while sintering between large PPs within aggregates only had mild effects. For an ethylene premixed flame with stagnation plate height being 1.2 cm (Combust. Flame, 198:428-435, 2018), good agreement was obtained between both the computed and measured PPSD and fractal dimension, which supports the current mechanisms contributing to the evolution of PPs, i.e. nucleation, coagulation, surface growth and sintering. Moreover, time scale analysis for individual sooting processes was performed to determine the dominant particle processes at different periods of time, which helped explain the evolution of soot morphology. |
doi_str_mv | 10.1016/j.combustflame.2020.02.028 |
format | Article |
fullrecord | <record><control><sourceid>proquest_webof</sourceid><recordid>TN_cdi_proquest_journals_2439035131</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0010218020300912</els_id><sourcerecordid>2439035131</sourcerecordid><originalsourceid>FETCH-LOGICAL-c404t-63ddeb4486ff40843184d354375abbd125d1d2396d35142cb3e1fb6ff0802d333</originalsourceid><addsrcrecordid>eNqNkE1LxDAQhoMouK7-h6JHaZ18tGa9yfoJggf14Cm0zVSztM2apOr6683aRTwKAwnheWcmDyGHFDIKtDhZZLXtqsGHpi07zBgwyIDFkltkQvO8SNmM0W0yAaCQMiphl-x5vwCAU8H5hDw_mG5oy2Bsn9gmWTrTlW6VLEsXTN1i4s0XJtr44Ew1rCmfmD4pI4id-USdYHhdtdhHMpQv_djoZ5l9stOUrceDzTklT1eXj_Ob9O7--nZ-fpfWAkRIC641VkLIomkESMGpFJrngp_mZVVpynJNNeOzIj5SweqKI22qCIMEpjnnU3I09l06-zagD2phB9fHkYoJPoMY4zRSZyNVO-u9w0ZtvqooqLVKtVB_Vaq1SgUsloxhOYY_sLKNrw32Nf42iC5zzgsmZLxRPjfhx8LcDn2I0eP_RyN9MdIYhb0bdGqT0MZhHZS25j_7fgPvB6V0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2439035131</pqid></control><display><type>article</type><title>Simulation of primary particle size distributions in a premixed ethylene stagnation flame</title><source>Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /></source><source>Access via ScienceDirect (Elsevier)</source><creator>Hou, Dingyu ; Lindberg, Casper S. ; Wang, Mengda ; Manuputty, Manoel Y. ; You, Xiaoqing ; Kraft, Markus</creator><creatorcontrib>Hou, Dingyu ; Lindberg, Casper S. ; Wang, Mengda ; Manuputty, Manoel Y. ; You, Xiaoqing ; Kraft, Markus</creatorcontrib><description>Numerical simulation of soot formation in a laminar premixed burner-stabilized ethylene stagnation flame was performed with a detailed population balance model (DPBM) capable of tracking full structural details of aggregates as well as their chemical composition. A thorough parametric sensitivity study was carried out to understand the influence of individual sooting processes on the computed primary particle size distributions (PPSDs). The rate of production of pyrene, coagulation efficiency and surface growth rate were found to have significant effects on the computed PPSDs. Besides, we found that the instantaneous sintering between small primary particles (PP) can affect the computed PPSDs drastically while sintering between large PPs within aggregates only had mild effects. For an ethylene premixed flame with stagnation plate height being 1.2 cm (Combust. Flame, 198:428-435, 2018), good agreement was obtained between both the computed and measured PPSD and fractal dimension, which supports the current mechanisms contributing to the evolution of PPs, i.e. nucleation, coagulation, surface growth and sintering. Moreover, time scale analysis for individual sooting processes was performed to determine the dominant particle processes at different periods of time, which helped explain the evolution of soot morphology.</description><identifier>ISSN: 0010-2180</identifier><identifier>EISSN: 1556-2921</identifier><identifier>DOI: 10.1016/j.combustflame.2020.02.028</identifier><language>eng</language><publisher>NEW YORK: Elsevier Inc</publisher><subject>Aggregates ; Chemical composition ; Coagulation ; Computation ; Computer simulation ; Energy & Fuels ; Engineering ; Engineering, Chemical ; Engineering, Mechanical ; Engineering, Multidisciplinary ; Ethylene ; Evolution ; Fractal geometry ; Mathematical models ; Morphology ; Nucleation ; Parameter sensitivity ; Particle size ; Physical Sciences ; Population balance models ; Population balance simulation ; Premixed flames ; Primary particle size distribution ; Science & Technology ; Sintering ; Soot ; Soot morphology ; Stagnation ; Technology ; Thermodynamics</subject><ispartof>Combustion and flame, 2020-06, Vol.216, p.126-135</ispartof><rights>2020 The Combustion Institute</rights><rights>Copyright Elsevier BV Jun 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>14</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000533624800013</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c404t-63ddeb4486ff40843184d354375abbd125d1d2396d35142cb3e1fb6ff0802d333</citedby><cites>FETCH-LOGICAL-c404t-63ddeb4486ff40843184d354375abbd125d1d2396d35142cb3e1fb6ff0802d333</cites><orcidid>0000-0002-3591-3235 ; 0000-0003-4680-4576 ; 0000-0002-4293-8924</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.combustflame.2020.02.028$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>315,781,785,3551,27929,27930,28253,46000</link.rule.ids></links><search><creatorcontrib>Hou, Dingyu</creatorcontrib><creatorcontrib>Lindberg, Casper S.</creatorcontrib><creatorcontrib>Wang, Mengda</creatorcontrib><creatorcontrib>Manuputty, Manoel Y.</creatorcontrib><creatorcontrib>You, Xiaoqing</creatorcontrib><creatorcontrib>Kraft, Markus</creatorcontrib><title>Simulation of primary particle size distributions in a premixed ethylene stagnation flame</title><title>Combustion and flame</title><addtitle>COMBUST FLAME</addtitle><description>Numerical simulation of soot formation in a laminar premixed burner-stabilized ethylene stagnation flame was performed with a detailed population balance model (DPBM) capable of tracking full structural details of aggregates as well as their chemical composition. A thorough parametric sensitivity study was carried out to understand the influence of individual sooting processes on the computed primary particle size distributions (PPSDs). The rate of production of pyrene, coagulation efficiency and surface growth rate were found to have significant effects on the computed PPSDs. Besides, we found that the instantaneous sintering between small primary particles (PP) can affect the computed PPSDs drastically while sintering between large PPs within aggregates only had mild effects. For an ethylene premixed flame with stagnation plate height being 1.2 cm (Combust. Flame, 198:428-435, 2018), good agreement was obtained between both the computed and measured PPSD and fractal dimension, which supports the current mechanisms contributing to the evolution of PPs, i.e. nucleation, coagulation, surface growth and sintering. Moreover, time scale analysis for individual sooting processes was performed to determine the dominant particle processes at different periods of time, which helped explain the evolution of soot morphology.</description><subject>Aggregates</subject><subject>Chemical composition</subject><subject>Coagulation</subject><subject>Computation</subject><subject>Computer simulation</subject><subject>Energy & Fuels</subject><subject>Engineering</subject><subject>Engineering, Chemical</subject><subject>Engineering, Mechanical</subject><subject>Engineering, Multidisciplinary</subject><subject>Ethylene</subject><subject>Evolution</subject><subject>Fractal geometry</subject><subject>Mathematical models</subject><subject>Morphology</subject><subject>Nucleation</subject><subject>Parameter sensitivity</subject><subject>Particle size</subject><subject>Physical Sciences</subject><subject>Population balance models</subject><subject>Population balance simulation</subject><subject>Premixed flames</subject><subject>Primary particle size distribution</subject><subject>Science & Technology</subject><subject>Sintering</subject><subject>Soot</subject><subject>Soot morphology</subject><subject>Stagnation</subject><subject>Technology</subject><subject>Thermodynamics</subject><issn>0010-2180</issn><issn>1556-2921</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AOWDO</sourceid><recordid>eNqNkE1LxDAQhoMouK7-h6JHaZ18tGa9yfoJggf14Cm0zVSztM2apOr6683aRTwKAwnheWcmDyGHFDIKtDhZZLXtqsGHpi07zBgwyIDFkltkQvO8SNmM0W0yAaCQMiphl-x5vwCAU8H5hDw_mG5oy2Bsn9gmWTrTlW6VLEsXTN1i4s0XJtr44Ew1rCmfmD4pI4id-USdYHhdtdhHMpQv_djoZ5l9stOUrceDzTklT1eXj_Ob9O7--nZ-fpfWAkRIC641VkLIomkESMGpFJrngp_mZVVpynJNNeOzIj5SweqKI22qCIMEpjnnU3I09l06-zagD2phB9fHkYoJPoMY4zRSZyNVO-u9w0ZtvqooqLVKtVB_Vaq1SgUsloxhOYY_sLKNrw32Nf42iC5zzgsmZLxRPjfhx8LcDn2I0eP_RyN9MdIYhb0bdGqT0MZhHZS25j_7fgPvB6V0</recordid><startdate>202006</startdate><enddate>202006</enddate><creator>Hou, Dingyu</creator><creator>Lindberg, Casper S.</creator><creator>Wang, Mengda</creator><creator>Manuputty, Manoel Y.</creator><creator>You, Xiaoqing</creator><creator>Kraft, Markus</creator><general>Elsevier Inc</general><general>Elsevier</general><general>Elsevier BV</general><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-3591-3235</orcidid><orcidid>https://orcid.org/0000-0003-4680-4576</orcidid><orcidid>https://orcid.org/0000-0002-4293-8924</orcidid></search><sort><creationdate>202006</creationdate><title>Simulation of primary particle size distributions in a premixed ethylene stagnation flame</title><author>Hou, Dingyu ; Lindberg, Casper S. ; Wang, Mengda ; Manuputty, Manoel Y. ; You, Xiaoqing ; Kraft, Markus</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c404t-63ddeb4486ff40843184d354375abbd125d1d2396d35142cb3e1fb6ff0802d333</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Aggregates</topic><topic>Chemical composition</topic><topic>Coagulation</topic><topic>Computation</topic><topic>Computer simulation</topic><topic>Energy & Fuels</topic><topic>Engineering</topic><topic>Engineering, Chemical</topic><topic>Engineering, Mechanical</topic><topic>Engineering, Multidisciplinary</topic><topic>Ethylene</topic><topic>Evolution</topic><topic>Fractal geometry</topic><topic>Mathematical models</topic><topic>Morphology</topic><topic>Nucleation</topic><topic>Parameter sensitivity</topic><topic>Particle size</topic><topic>Physical Sciences</topic><topic>Population balance models</topic><topic>Population balance simulation</topic><topic>Premixed flames</topic><topic>Primary particle size distribution</topic><topic>Science & Technology</topic><topic>Sintering</topic><topic>Soot</topic><topic>Soot morphology</topic><topic>Stagnation</topic><topic>Technology</topic><topic>Thermodynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hou, Dingyu</creatorcontrib><creatorcontrib>Lindberg, Casper S.</creatorcontrib><creatorcontrib>Wang, Mengda</creatorcontrib><creatorcontrib>Manuputty, Manoel Y.</creatorcontrib><creatorcontrib>You, Xiaoqing</creatorcontrib><creatorcontrib>Kraft, Markus</creatorcontrib><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Combustion and flame</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hou, Dingyu</au><au>Lindberg, Casper S.</au><au>Wang, Mengda</au><au>Manuputty, Manoel Y.</au><au>You, Xiaoqing</au><au>Kraft, Markus</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Simulation of primary particle size distributions in a premixed ethylene stagnation flame</atitle><jtitle>Combustion and flame</jtitle><stitle>COMBUST FLAME</stitle><date>2020-06</date><risdate>2020</risdate><volume>216</volume><spage>126</spage><epage>135</epage><pages>126-135</pages><issn>0010-2180</issn><eissn>1556-2921</eissn><abstract>Numerical simulation of soot formation in a laminar premixed burner-stabilized ethylene stagnation flame was performed with a detailed population balance model (DPBM) capable of tracking full structural details of aggregates as well as their chemical composition. A thorough parametric sensitivity study was carried out to understand the influence of individual sooting processes on the computed primary particle size distributions (PPSDs). The rate of production of pyrene, coagulation efficiency and surface growth rate were found to have significant effects on the computed PPSDs. Besides, we found that the instantaneous sintering between small primary particles (PP) can affect the computed PPSDs drastically while sintering between large PPs within aggregates only had mild effects. For an ethylene premixed flame with stagnation plate height being 1.2 cm (Combust. Flame, 198:428-435, 2018), good agreement was obtained between both the computed and measured PPSD and fractal dimension, which supports the current mechanisms contributing to the evolution of PPs, i.e. nucleation, coagulation, surface growth and sintering. Moreover, time scale analysis for individual sooting processes was performed to determine the dominant particle processes at different periods of time, which helped explain the evolution of soot morphology.</abstract><cop>NEW YORK</cop><pub>Elsevier Inc</pub><doi>10.1016/j.combustflame.2020.02.028</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-3591-3235</orcidid><orcidid>https://orcid.org/0000-0003-4680-4576</orcidid><orcidid>https://orcid.org/0000-0002-4293-8924</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0010-2180 |
ispartof | Combustion and flame, 2020-06, Vol.216, p.126-135 |
issn | 0010-2180 1556-2921 |
language | eng |
recordid | cdi_proquest_journals_2439035131 |
source | Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; Access via ScienceDirect (Elsevier) |
subjects | Aggregates Chemical composition Coagulation Computation Computer simulation Energy & Fuels Engineering Engineering, Chemical Engineering, Mechanical Engineering, Multidisciplinary Ethylene Evolution Fractal geometry Mathematical models Morphology Nucleation Parameter sensitivity Particle size Physical Sciences Population balance models Population balance simulation Premixed flames Primary particle size distribution Science & Technology Sintering Soot Soot morphology Stagnation Technology Thermodynamics |
title | Simulation of primary particle size distributions in a premixed ethylene stagnation flame |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-13T16%3A42%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_webof&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Simulation%20of%20primary%20particle%20size%20distributions%20in%20a%20premixed%20ethylene%20stagnation%20flame&rft.jtitle=Combustion%20and%20flame&rft.au=Hou,%20Dingyu&rft.date=2020-06&rft.volume=216&rft.spage=126&rft.epage=135&rft.pages=126-135&rft.issn=0010-2180&rft.eissn=1556-2921&rft_id=info:doi/10.1016/j.combustflame.2020.02.028&rft_dat=%3Cproquest_webof%3E2439035131%3C/proquest_webof%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2439035131&rft_id=info:pmid/&rft_els_id=S0010218020300912&rfr_iscdi=true |