Simulation of primary particle size distributions in a premixed ethylene stagnation flame

Numerical simulation of soot formation in a laminar premixed burner-stabilized ethylene stagnation flame was performed with a detailed population balance model (DPBM) capable of tracking full structural details of aggregates as well as their chemical composition. A thorough parametric sensitivity st...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Combustion and flame 2020-06, Vol.216, p.126-135
Hauptverfasser: Hou, Dingyu, Lindberg, Casper S., Wang, Mengda, Manuputty, Manoel Y., You, Xiaoqing, Kraft, Markus
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 135
container_issue
container_start_page 126
container_title Combustion and flame
container_volume 216
creator Hou, Dingyu
Lindberg, Casper S.
Wang, Mengda
Manuputty, Manoel Y.
You, Xiaoqing
Kraft, Markus
description Numerical simulation of soot formation in a laminar premixed burner-stabilized ethylene stagnation flame was performed with a detailed population balance model (DPBM) capable of tracking full structural details of aggregates as well as their chemical composition. A thorough parametric sensitivity study was carried out to understand the influence of individual sooting processes on the computed primary particle size distributions (PPSDs). The rate of production of pyrene, coagulation efficiency and surface growth rate were found to have significant effects on the computed PPSDs. Besides, we found that the instantaneous sintering between small primary particles (PP) can affect the computed PPSDs drastically while sintering between large PPs within aggregates only had mild effects. For an ethylene premixed flame with stagnation plate height being 1.2 cm (Combust. Flame, 198:428-435, 2018), good agreement was obtained between both the computed and measured PPSD and fractal dimension, which supports the current mechanisms contributing to the evolution of PPs, i.e. nucleation, coagulation, surface growth and sintering. Moreover, time scale analysis for individual sooting processes was performed to determine the dominant particle processes at different periods of time, which helped explain the evolution of soot morphology.
doi_str_mv 10.1016/j.combustflame.2020.02.028
format Article
fullrecord <record><control><sourceid>proquest_webof</sourceid><recordid>TN_cdi_proquest_journals_2439035131</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0010218020300912</els_id><sourcerecordid>2439035131</sourcerecordid><originalsourceid>FETCH-LOGICAL-c404t-63ddeb4486ff40843184d354375abbd125d1d2396d35142cb3e1fb6ff0802d333</originalsourceid><addsrcrecordid>eNqNkE1LxDAQhoMouK7-h6JHaZ18tGa9yfoJggf14Cm0zVSztM2apOr6683aRTwKAwnheWcmDyGHFDIKtDhZZLXtqsGHpi07zBgwyIDFkltkQvO8SNmM0W0yAaCQMiphl-x5vwCAU8H5hDw_mG5oy2Bsn9gmWTrTlW6VLEsXTN1i4s0XJtr44Ew1rCmfmD4pI4id-USdYHhdtdhHMpQv_djoZ5l9stOUrceDzTklT1eXj_Ob9O7--nZ-fpfWAkRIC641VkLIomkESMGpFJrngp_mZVVpynJNNeOzIj5SweqKI22qCIMEpjnnU3I09l06-zagD2phB9fHkYoJPoMY4zRSZyNVO-u9w0ZtvqooqLVKtVB_Vaq1SgUsloxhOYY_sLKNrw32Nf42iC5zzgsmZLxRPjfhx8LcDn2I0eP_RyN9MdIYhb0bdGqT0MZhHZS25j_7fgPvB6V0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2439035131</pqid></control><display><type>article</type><title>Simulation of primary particle size distributions in a premixed ethylene stagnation flame</title><source>Web of Science - Science Citation Index Expanded - 2020&lt;img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /&gt;</source><source>Access via ScienceDirect (Elsevier)</source><creator>Hou, Dingyu ; Lindberg, Casper S. ; Wang, Mengda ; Manuputty, Manoel Y. ; You, Xiaoqing ; Kraft, Markus</creator><creatorcontrib>Hou, Dingyu ; Lindberg, Casper S. ; Wang, Mengda ; Manuputty, Manoel Y. ; You, Xiaoqing ; Kraft, Markus</creatorcontrib><description>Numerical simulation of soot formation in a laminar premixed burner-stabilized ethylene stagnation flame was performed with a detailed population balance model (DPBM) capable of tracking full structural details of aggregates as well as their chemical composition. A thorough parametric sensitivity study was carried out to understand the influence of individual sooting processes on the computed primary particle size distributions (PPSDs). The rate of production of pyrene, coagulation efficiency and surface growth rate were found to have significant effects on the computed PPSDs. Besides, we found that the instantaneous sintering between small primary particles (PP) can affect the computed PPSDs drastically while sintering between large PPs within aggregates only had mild effects. For an ethylene premixed flame with stagnation plate height being 1.2 cm (Combust. Flame, 198:428-435, 2018), good agreement was obtained between both the computed and measured PPSD and fractal dimension, which supports the current mechanisms contributing to the evolution of PPs, i.e. nucleation, coagulation, surface growth and sintering. Moreover, time scale analysis for individual sooting processes was performed to determine the dominant particle processes at different periods of time, which helped explain the evolution of soot morphology.</description><identifier>ISSN: 0010-2180</identifier><identifier>EISSN: 1556-2921</identifier><identifier>DOI: 10.1016/j.combustflame.2020.02.028</identifier><language>eng</language><publisher>NEW YORK: Elsevier Inc</publisher><subject>Aggregates ; Chemical composition ; Coagulation ; Computation ; Computer simulation ; Energy &amp; Fuels ; Engineering ; Engineering, Chemical ; Engineering, Mechanical ; Engineering, Multidisciplinary ; Ethylene ; Evolution ; Fractal geometry ; Mathematical models ; Morphology ; Nucleation ; Parameter sensitivity ; Particle size ; Physical Sciences ; Population balance models ; Population balance simulation ; Premixed flames ; Primary particle size distribution ; Science &amp; Technology ; Sintering ; Soot ; Soot morphology ; Stagnation ; Technology ; Thermodynamics</subject><ispartof>Combustion and flame, 2020-06, Vol.216, p.126-135</ispartof><rights>2020 The Combustion Institute</rights><rights>Copyright Elsevier BV Jun 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>14</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000533624800013</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c404t-63ddeb4486ff40843184d354375abbd125d1d2396d35142cb3e1fb6ff0802d333</citedby><cites>FETCH-LOGICAL-c404t-63ddeb4486ff40843184d354375abbd125d1d2396d35142cb3e1fb6ff0802d333</cites><orcidid>0000-0002-3591-3235 ; 0000-0003-4680-4576 ; 0000-0002-4293-8924</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.combustflame.2020.02.028$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>315,781,785,3551,27929,27930,28253,46000</link.rule.ids></links><search><creatorcontrib>Hou, Dingyu</creatorcontrib><creatorcontrib>Lindberg, Casper S.</creatorcontrib><creatorcontrib>Wang, Mengda</creatorcontrib><creatorcontrib>Manuputty, Manoel Y.</creatorcontrib><creatorcontrib>You, Xiaoqing</creatorcontrib><creatorcontrib>Kraft, Markus</creatorcontrib><title>Simulation of primary particle size distributions in a premixed ethylene stagnation flame</title><title>Combustion and flame</title><addtitle>COMBUST FLAME</addtitle><description>Numerical simulation of soot formation in a laminar premixed burner-stabilized ethylene stagnation flame was performed with a detailed population balance model (DPBM) capable of tracking full structural details of aggregates as well as their chemical composition. A thorough parametric sensitivity study was carried out to understand the influence of individual sooting processes on the computed primary particle size distributions (PPSDs). The rate of production of pyrene, coagulation efficiency and surface growth rate were found to have significant effects on the computed PPSDs. Besides, we found that the instantaneous sintering between small primary particles (PP) can affect the computed PPSDs drastically while sintering between large PPs within aggregates only had mild effects. For an ethylene premixed flame with stagnation plate height being 1.2 cm (Combust. Flame, 198:428-435, 2018), good agreement was obtained between both the computed and measured PPSD and fractal dimension, which supports the current mechanisms contributing to the evolution of PPs, i.e. nucleation, coagulation, surface growth and sintering. Moreover, time scale analysis for individual sooting processes was performed to determine the dominant particle processes at different periods of time, which helped explain the evolution of soot morphology.</description><subject>Aggregates</subject><subject>Chemical composition</subject><subject>Coagulation</subject><subject>Computation</subject><subject>Computer simulation</subject><subject>Energy &amp; Fuels</subject><subject>Engineering</subject><subject>Engineering, Chemical</subject><subject>Engineering, Mechanical</subject><subject>Engineering, Multidisciplinary</subject><subject>Ethylene</subject><subject>Evolution</subject><subject>Fractal geometry</subject><subject>Mathematical models</subject><subject>Morphology</subject><subject>Nucleation</subject><subject>Parameter sensitivity</subject><subject>Particle size</subject><subject>Physical Sciences</subject><subject>Population balance models</subject><subject>Population balance simulation</subject><subject>Premixed flames</subject><subject>Primary particle size distribution</subject><subject>Science &amp; Technology</subject><subject>Sintering</subject><subject>Soot</subject><subject>Soot morphology</subject><subject>Stagnation</subject><subject>Technology</subject><subject>Thermodynamics</subject><issn>0010-2180</issn><issn>1556-2921</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AOWDO</sourceid><recordid>eNqNkE1LxDAQhoMouK7-h6JHaZ18tGa9yfoJggf14Cm0zVSztM2apOr6683aRTwKAwnheWcmDyGHFDIKtDhZZLXtqsGHpi07zBgwyIDFkltkQvO8SNmM0W0yAaCQMiphl-x5vwCAU8H5hDw_mG5oy2Bsn9gmWTrTlW6VLEsXTN1i4s0XJtr44Ew1rCmfmD4pI4id-USdYHhdtdhHMpQv_djoZ5l9stOUrceDzTklT1eXj_Ob9O7--nZ-fpfWAkRIC641VkLIomkESMGpFJrngp_mZVVpynJNNeOzIj5SweqKI22qCIMEpjnnU3I09l06-zagD2phB9fHkYoJPoMY4zRSZyNVO-u9w0ZtvqooqLVKtVB_Vaq1SgUsloxhOYY_sLKNrw32Nf42iC5zzgsmZLxRPjfhx8LcDn2I0eP_RyN9MdIYhb0bdGqT0MZhHZS25j_7fgPvB6V0</recordid><startdate>202006</startdate><enddate>202006</enddate><creator>Hou, Dingyu</creator><creator>Lindberg, Casper S.</creator><creator>Wang, Mengda</creator><creator>Manuputty, Manoel Y.</creator><creator>You, Xiaoqing</creator><creator>Kraft, Markus</creator><general>Elsevier Inc</general><general>Elsevier</general><general>Elsevier BV</general><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-3591-3235</orcidid><orcidid>https://orcid.org/0000-0003-4680-4576</orcidid><orcidid>https://orcid.org/0000-0002-4293-8924</orcidid></search><sort><creationdate>202006</creationdate><title>Simulation of primary particle size distributions in a premixed ethylene stagnation flame</title><author>Hou, Dingyu ; Lindberg, Casper S. ; Wang, Mengda ; Manuputty, Manoel Y. ; You, Xiaoqing ; Kraft, Markus</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c404t-63ddeb4486ff40843184d354375abbd125d1d2396d35142cb3e1fb6ff0802d333</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Aggregates</topic><topic>Chemical composition</topic><topic>Coagulation</topic><topic>Computation</topic><topic>Computer simulation</topic><topic>Energy &amp; Fuels</topic><topic>Engineering</topic><topic>Engineering, Chemical</topic><topic>Engineering, Mechanical</topic><topic>Engineering, Multidisciplinary</topic><topic>Ethylene</topic><topic>Evolution</topic><topic>Fractal geometry</topic><topic>Mathematical models</topic><topic>Morphology</topic><topic>Nucleation</topic><topic>Parameter sensitivity</topic><topic>Particle size</topic><topic>Physical Sciences</topic><topic>Population balance models</topic><topic>Population balance simulation</topic><topic>Premixed flames</topic><topic>Primary particle size distribution</topic><topic>Science &amp; Technology</topic><topic>Sintering</topic><topic>Soot</topic><topic>Soot morphology</topic><topic>Stagnation</topic><topic>Technology</topic><topic>Thermodynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hou, Dingyu</creatorcontrib><creatorcontrib>Lindberg, Casper S.</creatorcontrib><creatorcontrib>Wang, Mengda</creatorcontrib><creatorcontrib>Manuputty, Manoel Y.</creatorcontrib><creatorcontrib>You, Xiaoqing</creatorcontrib><creatorcontrib>Kraft, Markus</creatorcontrib><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Combustion and flame</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hou, Dingyu</au><au>Lindberg, Casper S.</au><au>Wang, Mengda</au><au>Manuputty, Manoel Y.</au><au>You, Xiaoqing</au><au>Kraft, Markus</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Simulation of primary particle size distributions in a premixed ethylene stagnation flame</atitle><jtitle>Combustion and flame</jtitle><stitle>COMBUST FLAME</stitle><date>2020-06</date><risdate>2020</risdate><volume>216</volume><spage>126</spage><epage>135</epage><pages>126-135</pages><issn>0010-2180</issn><eissn>1556-2921</eissn><abstract>Numerical simulation of soot formation in a laminar premixed burner-stabilized ethylene stagnation flame was performed with a detailed population balance model (DPBM) capable of tracking full structural details of aggregates as well as their chemical composition. A thorough parametric sensitivity study was carried out to understand the influence of individual sooting processes on the computed primary particle size distributions (PPSDs). The rate of production of pyrene, coagulation efficiency and surface growth rate were found to have significant effects on the computed PPSDs. Besides, we found that the instantaneous sintering between small primary particles (PP) can affect the computed PPSDs drastically while sintering between large PPs within aggregates only had mild effects. For an ethylene premixed flame with stagnation plate height being 1.2 cm (Combust. Flame, 198:428-435, 2018), good agreement was obtained between both the computed and measured PPSD and fractal dimension, which supports the current mechanisms contributing to the evolution of PPs, i.e. nucleation, coagulation, surface growth and sintering. Moreover, time scale analysis for individual sooting processes was performed to determine the dominant particle processes at different periods of time, which helped explain the evolution of soot morphology.</abstract><cop>NEW YORK</cop><pub>Elsevier Inc</pub><doi>10.1016/j.combustflame.2020.02.028</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-3591-3235</orcidid><orcidid>https://orcid.org/0000-0003-4680-4576</orcidid><orcidid>https://orcid.org/0000-0002-4293-8924</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0010-2180
ispartof Combustion and flame, 2020-06, Vol.216, p.126-135
issn 0010-2180
1556-2921
language eng
recordid cdi_proquest_journals_2439035131
source Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; Access via ScienceDirect (Elsevier)
subjects Aggregates
Chemical composition
Coagulation
Computation
Computer simulation
Energy & Fuels
Engineering
Engineering, Chemical
Engineering, Mechanical
Engineering, Multidisciplinary
Ethylene
Evolution
Fractal geometry
Mathematical models
Morphology
Nucleation
Parameter sensitivity
Particle size
Physical Sciences
Population balance models
Population balance simulation
Premixed flames
Primary particle size distribution
Science & Technology
Sintering
Soot
Soot morphology
Stagnation
Technology
Thermodynamics
title Simulation of primary particle size distributions in a premixed ethylene stagnation flame
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-13T16%3A42%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_webof&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Simulation%20of%20primary%20particle%20size%20distributions%20in%20a%20premixed%20ethylene%20stagnation%20flame&rft.jtitle=Combustion%20and%20flame&rft.au=Hou,%20Dingyu&rft.date=2020-06&rft.volume=216&rft.spage=126&rft.epage=135&rft.pages=126-135&rft.issn=0010-2180&rft.eissn=1556-2921&rft_id=info:doi/10.1016/j.combustflame.2020.02.028&rft_dat=%3Cproquest_webof%3E2439035131%3C/proquest_webof%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2439035131&rft_id=info:pmid/&rft_els_id=S0010218020300912&rfr_iscdi=true