Discontinuous Galerkin formulation for eddy-current problems

Purpose - The purpose of this paper is to describe a method for solving eddy current problems. Discontinuous basis functions are applied to conducting regions in eddy-current problems. This results in a block-diagonal mass matrix allowing explicit time stepping without having to solve large algebrai...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Compel 2009-07, Vol.28 (4), p.1081-1090
Hauptverfasser: Außerhofer, S., Bíró, O., Preis, K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1090
container_issue 4
container_start_page 1081
container_title Compel
container_volume 28
creator Außerhofer, S.
Bíró, O.
Preis, K.
description Purpose - The purpose of this paper is to describe a method for solving eddy current problems. Discontinuous basis functions are applied to conducting regions in eddy-current problems. This results in a block-diagonal mass matrix allowing explicit time stepping without having to solve large algebraic systems.Design methodology approach - The effect of the basis functions in the conducting region is limited to the respective finite element. This yields to a block-diagonal mass matrix, whereas each block in this matrix belongs to one finite element. In the nonconducting region, traditional finite elements are used which leads to well-conditioned system matrices. For the two regions, different time steps are used.Findings - To avoid instability, a term which penalizes the tangential jump of the magnetic vector potential A has to be added. A value for weighting this term is suggested and tested on a simple two dimensional example.Originality value - The proposed method leads to a potentially fast method for solving eddy-current problems.
doi_str_mv 10.1108/03321640910959125
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2439000074</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2439000074</sourcerecordid><originalsourceid>FETCH-LOGICAL-c378t-87c6e686d71014419b904f26677673fcd61e73a8ce572672d30ee29effcb1f2c3</originalsourceid><addsrcrecordid>eNp1kE9PwzAMxSMEEmPwAbhVcKXg_GnSSFzQgIE0iQucoy51pI62GUl72LcnY4jLmC-25N_zkx8hlxRuKYXyDjhnVArQFHShKSuOyIRBIfJCgjwmk-0-T4A-JWcxriCVLmBC7h-baH0_NP3ox5jNqxbDZ9NnzodubKuh8T9zhnW9ye0YAvZDtg5-2WIXz8mJq9qIF799Sj6en95nL_nibf46e1jklqtyyEtlJcpS1ooCFYLqpQbhmJRKScWdrSVFxavSYqGYVKzmgMg0OmeX1DHLp-R6dzcZf40YB7PyY-iTpWGC6-0zSiTq6iAFWnMKTCWI7iAbfIwBnVmHpqvCxlAw2yTNXpJJc7PTYIehaus_yR5q1rVLOPyPH3b4Bo-nf9o</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>209931027</pqid></control><display><type>article</type><title>Discontinuous Galerkin formulation for eddy-current problems</title><source>Emerald A-Z Current Journals</source><creator>Außerhofer, S. ; Bíró, O. ; Preis, K.</creator><contributor>Bíró David A. Lowther, Oszkár</contributor><creatorcontrib>Außerhofer, S. ; Bíró, O. ; Preis, K. ; Bíró David A. Lowther, Oszkár</creatorcontrib><description>Purpose - The purpose of this paper is to describe a method for solving eddy current problems. Discontinuous basis functions are applied to conducting regions in eddy-current problems. This results in a block-diagonal mass matrix allowing explicit time stepping without having to solve large algebraic systems.Design methodology approach - The effect of the basis functions in the conducting region is limited to the respective finite element. This yields to a block-diagonal mass matrix, whereas each block in this matrix belongs to one finite element. In the nonconducting region, traditional finite elements are used which leads to well-conditioned system matrices. For the two regions, different time steps are used.Findings - To avoid instability, a term which penalizes the tangential jump of the magnetic vector potential A has to be added. A value for weighting this term is suggested and tested on a simple two dimensional example.Originality value - The proposed method leads to a potentially fast method for solving eddy-current problems.</description><identifier>ISSN: 0332-1649</identifier><identifier>EISSN: 2054-5606</identifier><identifier>DOI: 10.1108/03321640910959125</identifier><identifier>CODEN: CODUDU</identifier><language>eng</language><publisher>Bradford: Emerald Group Publishing Limited</publisher><subject>Basis functions ; Boundary conditions ; Eddy currents ; Electric currents ; Galerkin method ; Magnetic fields ; Magnetic vector potentials ; Mass matrix ; Mathematical analysis ; Mathematical models ; Studies ; Time series</subject><ispartof>Compel, 2009-07, Vol.28 (4), p.1081-1090</ispartof><rights>Emerald Group Publishing Limited</rights><rights>Copyright Emerald Group Publishing Limited 2009</rights><rights>Emerald Group Publishing Limited 2009</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c378t-87c6e686d71014419b904f26677673fcd61e73a8ce572672d30ee29effcb1f2c3</citedby><cites>FETCH-LOGICAL-c378t-87c6e686d71014419b904f26677673fcd61e73a8ce572672d30ee29effcb1f2c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.emerald.com/insight/content/doi/10.1108/03321640910959125/full/pdf$$EPDF$$P50$$Gemerald$$H</linktopdf><linktohtml>$$Uhttps://www.emerald.com/insight/content/doi/10.1108/03321640910959125/full/html$$EHTML$$P50$$Gemerald$$H</linktohtml><link.rule.ids>314,780,784,967,11635,27924,27925,52686,52689</link.rule.ids></links><search><contributor>Bíró David A. Lowther, Oszkár</contributor><creatorcontrib>Außerhofer, S.</creatorcontrib><creatorcontrib>Bíró, O.</creatorcontrib><creatorcontrib>Preis, K.</creatorcontrib><title>Discontinuous Galerkin formulation for eddy-current problems</title><title>Compel</title><description>Purpose - The purpose of this paper is to describe a method for solving eddy current problems. Discontinuous basis functions are applied to conducting regions in eddy-current problems. This results in a block-diagonal mass matrix allowing explicit time stepping without having to solve large algebraic systems.Design methodology approach - The effect of the basis functions in the conducting region is limited to the respective finite element. This yields to a block-diagonal mass matrix, whereas each block in this matrix belongs to one finite element. In the nonconducting region, traditional finite elements are used which leads to well-conditioned system matrices. For the two regions, different time steps are used.Findings - To avoid instability, a term which penalizes the tangential jump of the magnetic vector potential A has to be added. A value for weighting this term is suggested and tested on a simple two dimensional example.Originality value - The proposed method leads to a potentially fast method for solving eddy-current problems.</description><subject>Basis functions</subject><subject>Boundary conditions</subject><subject>Eddy currents</subject><subject>Electric currents</subject><subject>Galerkin method</subject><subject>Magnetic fields</subject><subject>Magnetic vector potentials</subject><subject>Mass matrix</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Studies</subject><subject>Time series</subject><issn>0332-1649</issn><issn>2054-5606</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kE9PwzAMxSMEEmPwAbhVcKXg_GnSSFzQgIE0iQucoy51pI62GUl72LcnY4jLmC-25N_zkx8hlxRuKYXyDjhnVArQFHShKSuOyIRBIfJCgjwmk-0-T4A-JWcxriCVLmBC7h-baH0_NP3ox5jNqxbDZ9NnzodubKuh8T9zhnW9ye0YAvZDtg5-2WIXz8mJq9qIF799Sj6en95nL_nibf46e1jklqtyyEtlJcpS1ooCFYLqpQbhmJRKScWdrSVFxavSYqGYVKzmgMg0OmeX1DHLp-R6dzcZf40YB7PyY-iTpWGC6-0zSiTq6iAFWnMKTCWI7iAbfIwBnVmHpqvCxlAw2yTNXpJJc7PTYIehaus_yR5q1rVLOPyPH3b4Bo-nf9o</recordid><startdate>20090710</startdate><enddate>20090710</enddate><creator>Außerhofer, S.</creator><creator>Bíró, O.</creator><creator>Preis, K.</creator><general>Emerald Group Publishing Limited</general><scope>AAYXX</scope><scope>CITATION</scope><scope>0U~</scope><scope>1-H</scope><scope>7SC</scope><scope>7SP</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L.0</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYYUZ</scope><scope>Q9U</scope></search><sort><creationdate>20090710</creationdate><title>Discontinuous Galerkin formulation for eddy-current problems</title><author>Außerhofer, S. ; Bíró, O. ; Preis, K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c378t-87c6e686d71014419b904f26677673fcd61e73a8ce572672d30ee29effcb1f2c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Basis functions</topic><topic>Boundary conditions</topic><topic>Eddy currents</topic><topic>Electric currents</topic><topic>Galerkin method</topic><topic>Magnetic fields</topic><topic>Magnetic vector potentials</topic><topic>Mass matrix</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Studies</topic><topic>Time series</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Außerhofer, S.</creatorcontrib><creatorcontrib>Bíró, O.</creatorcontrib><creatorcontrib>Preis, K.</creatorcontrib><collection>CrossRef</collection><collection>Global News &amp; ABI/Inform Professional</collection><collection>Trade PRO</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Access via ABI/INFORM (ProQuest)</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Professional Standard</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ABI/INFORM Collection China</collection><collection>ProQuest Central Basic</collection><jtitle>Compel</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Außerhofer, S.</au><au>Bíró, O.</au><au>Preis, K.</au><au>Bíró David A. Lowther, Oszkár</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Discontinuous Galerkin formulation for eddy-current problems</atitle><jtitle>Compel</jtitle><date>2009-07-10</date><risdate>2009</risdate><volume>28</volume><issue>4</issue><spage>1081</spage><epage>1090</epage><pages>1081-1090</pages><issn>0332-1649</issn><eissn>2054-5606</eissn><coden>CODUDU</coden><abstract>Purpose - The purpose of this paper is to describe a method for solving eddy current problems. Discontinuous basis functions are applied to conducting regions in eddy-current problems. This results in a block-diagonal mass matrix allowing explicit time stepping without having to solve large algebraic systems.Design methodology approach - The effect of the basis functions in the conducting region is limited to the respective finite element. This yields to a block-diagonal mass matrix, whereas each block in this matrix belongs to one finite element. In the nonconducting region, traditional finite elements are used which leads to well-conditioned system matrices. For the two regions, different time steps are used.Findings - To avoid instability, a term which penalizes the tangential jump of the magnetic vector potential A has to be added. A value for weighting this term is suggested and tested on a simple two dimensional example.Originality value - The proposed method leads to a potentially fast method for solving eddy-current problems.</abstract><cop>Bradford</cop><pub>Emerald Group Publishing Limited</pub><doi>10.1108/03321640910959125</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0332-1649
ispartof Compel, 2009-07, Vol.28 (4), p.1081-1090
issn 0332-1649
2054-5606
language eng
recordid cdi_proquest_journals_2439000074
source Emerald A-Z Current Journals
subjects Basis functions
Boundary conditions
Eddy currents
Electric currents
Galerkin method
Magnetic fields
Magnetic vector potentials
Mass matrix
Mathematical analysis
Mathematical models
Studies
Time series
title Discontinuous Galerkin formulation for eddy-current problems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T20%3A49%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Discontinuous%20Galerkin%20formulation%20for%20eddy-current%20problems&rft.jtitle=Compel&rft.au=Au%C3%9Ferhofer,%20S.&rft.date=2009-07-10&rft.volume=28&rft.issue=4&rft.spage=1081&rft.epage=1090&rft.pages=1081-1090&rft.issn=0332-1649&rft.eissn=2054-5606&rft.coden=CODUDU&rft_id=info:doi/10.1108/03321640910959125&rft_dat=%3Cproquest_cross%3E2439000074%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=209931027&rft_id=info:pmid/&rfr_iscdi=true