Discontinuous Galerkin formulation for eddy-current problems
Purpose - The purpose of this paper is to describe a method for solving eddy current problems. Discontinuous basis functions are applied to conducting regions in eddy-current problems. This results in a block-diagonal mass matrix allowing explicit time stepping without having to solve large algebrai...
Gespeichert in:
Veröffentlicht in: | Compel 2009-07, Vol.28 (4), p.1081-1090 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1090 |
---|---|
container_issue | 4 |
container_start_page | 1081 |
container_title | Compel |
container_volume | 28 |
creator | Außerhofer, S. Bíró, O. Preis, K. |
description | Purpose - The purpose of this paper is to describe a method for solving eddy current problems. Discontinuous basis functions are applied to conducting regions in eddy-current problems. This results in a block-diagonal mass matrix allowing explicit time stepping without having to solve large algebraic systems.Design methodology approach - The effect of the basis functions in the conducting region is limited to the respective finite element. This yields to a block-diagonal mass matrix, whereas each block in this matrix belongs to one finite element. In the nonconducting region, traditional finite elements are used which leads to well-conditioned system matrices. For the two regions, different time steps are used.Findings - To avoid instability, a term which penalizes the tangential jump of the magnetic vector potential A has to be added. A value for weighting this term is suggested and tested on a simple two dimensional example.Originality value - The proposed method leads to a potentially fast method for solving eddy-current problems. |
doi_str_mv | 10.1108/03321640910959125 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2439000074</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2439000074</sourcerecordid><originalsourceid>FETCH-LOGICAL-c378t-87c6e686d71014419b904f26677673fcd61e73a8ce572672d30ee29effcb1f2c3</originalsourceid><addsrcrecordid>eNp1kE9PwzAMxSMEEmPwAbhVcKXg_GnSSFzQgIE0iQucoy51pI62GUl72LcnY4jLmC-25N_zkx8hlxRuKYXyDjhnVArQFHShKSuOyIRBIfJCgjwmk-0-T4A-JWcxriCVLmBC7h-baH0_NP3ox5jNqxbDZ9NnzodubKuh8T9zhnW9ye0YAvZDtg5-2WIXz8mJq9qIF799Sj6en95nL_nibf46e1jklqtyyEtlJcpS1ooCFYLqpQbhmJRKScWdrSVFxavSYqGYVKzmgMg0OmeX1DHLp-R6dzcZf40YB7PyY-iTpWGC6-0zSiTq6iAFWnMKTCWI7iAbfIwBnVmHpqvCxlAw2yTNXpJJc7PTYIehaus_yR5q1rVLOPyPH3b4Bo-nf9o</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>209931027</pqid></control><display><type>article</type><title>Discontinuous Galerkin formulation for eddy-current problems</title><source>Emerald A-Z Current Journals</source><creator>Außerhofer, S. ; Bíró, O. ; Preis, K.</creator><contributor>Bíró David A. Lowther, Oszkár</contributor><creatorcontrib>Außerhofer, S. ; Bíró, O. ; Preis, K. ; Bíró David A. Lowther, Oszkár</creatorcontrib><description>Purpose - The purpose of this paper is to describe a method for solving eddy current problems. Discontinuous basis functions are applied to conducting regions in eddy-current problems. This results in a block-diagonal mass matrix allowing explicit time stepping without having to solve large algebraic systems.Design methodology approach - The effect of the basis functions in the conducting region is limited to the respective finite element. This yields to a block-diagonal mass matrix, whereas each block in this matrix belongs to one finite element. In the nonconducting region, traditional finite elements are used which leads to well-conditioned system matrices. For the two regions, different time steps are used.Findings - To avoid instability, a term which penalizes the tangential jump of the magnetic vector potential A has to be added. A value for weighting this term is suggested and tested on a simple two dimensional example.Originality value - The proposed method leads to a potentially fast method for solving eddy-current problems.</description><identifier>ISSN: 0332-1649</identifier><identifier>EISSN: 2054-5606</identifier><identifier>DOI: 10.1108/03321640910959125</identifier><identifier>CODEN: CODUDU</identifier><language>eng</language><publisher>Bradford: Emerald Group Publishing Limited</publisher><subject>Basis functions ; Boundary conditions ; Eddy currents ; Electric currents ; Galerkin method ; Magnetic fields ; Magnetic vector potentials ; Mass matrix ; Mathematical analysis ; Mathematical models ; Studies ; Time series</subject><ispartof>Compel, 2009-07, Vol.28 (4), p.1081-1090</ispartof><rights>Emerald Group Publishing Limited</rights><rights>Copyright Emerald Group Publishing Limited 2009</rights><rights>Emerald Group Publishing Limited 2009</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c378t-87c6e686d71014419b904f26677673fcd61e73a8ce572672d30ee29effcb1f2c3</citedby><cites>FETCH-LOGICAL-c378t-87c6e686d71014419b904f26677673fcd61e73a8ce572672d30ee29effcb1f2c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.emerald.com/insight/content/doi/10.1108/03321640910959125/full/pdf$$EPDF$$P50$$Gemerald$$H</linktopdf><linktohtml>$$Uhttps://www.emerald.com/insight/content/doi/10.1108/03321640910959125/full/html$$EHTML$$P50$$Gemerald$$H</linktohtml><link.rule.ids>314,780,784,967,11635,27924,27925,52686,52689</link.rule.ids></links><search><contributor>Bíró David A. Lowther, Oszkár</contributor><creatorcontrib>Außerhofer, S.</creatorcontrib><creatorcontrib>Bíró, O.</creatorcontrib><creatorcontrib>Preis, K.</creatorcontrib><title>Discontinuous Galerkin formulation for eddy-current problems</title><title>Compel</title><description>Purpose - The purpose of this paper is to describe a method for solving eddy current problems. Discontinuous basis functions are applied to conducting regions in eddy-current problems. This results in a block-diagonal mass matrix allowing explicit time stepping without having to solve large algebraic systems.Design methodology approach - The effect of the basis functions in the conducting region is limited to the respective finite element. This yields to a block-diagonal mass matrix, whereas each block in this matrix belongs to one finite element. In the nonconducting region, traditional finite elements are used which leads to well-conditioned system matrices. For the two regions, different time steps are used.Findings - To avoid instability, a term which penalizes the tangential jump of the magnetic vector potential A has to be added. A value for weighting this term is suggested and tested on a simple two dimensional example.Originality value - The proposed method leads to a potentially fast method for solving eddy-current problems.</description><subject>Basis functions</subject><subject>Boundary conditions</subject><subject>Eddy currents</subject><subject>Electric currents</subject><subject>Galerkin method</subject><subject>Magnetic fields</subject><subject>Magnetic vector potentials</subject><subject>Mass matrix</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Studies</subject><subject>Time series</subject><issn>0332-1649</issn><issn>2054-5606</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kE9PwzAMxSMEEmPwAbhVcKXg_GnSSFzQgIE0iQucoy51pI62GUl72LcnY4jLmC-25N_zkx8hlxRuKYXyDjhnVArQFHShKSuOyIRBIfJCgjwmk-0-T4A-JWcxriCVLmBC7h-baH0_NP3ox5jNqxbDZ9NnzodubKuh8T9zhnW9ye0YAvZDtg5-2WIXz8mJq9qIF799Sj6en95nL_nibf46e1jklqtyyEtlJcpS1ooCFYLqpQbhmJRKScWdrSVFxavSYqGYVKzmgMg0OmeX1DHLp-R6dzcZf40YB7PyY-iTpWGC6-0zSiTq6iAFWnMKTCWI7iAbfIwBnVmHpqvCxlAw2yTNXpJJc7PTYIehaus_yR5q1rVLOPyPH3b4Bo-nf9o</recordid><startdate>20090710</startdate><enddate>20090710</enddate><creator>Außerhofer, S.</creator><creator>Bíró, O.</creator><creator>Preis, K.</creator><general>Emerald Group Publishing Limited</general><scope>AAYXX</scope><scope>CITATION</scope><scope>0U~</scope><scope>1-H</scope><scope>7SC</scope><scope>7SP</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L.0</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYYUZ</scope><scope>Q9U</scope></search><sort><creationdate>20090710</creationdate><title>Discontinuous Galerkin formulation for eddy-current problems</title><author>Außerhofer, S. ; Bíró, O. ; Preis, K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c378t-87c6e686d71014419b904f26677673fcd61e73a8ce572672d30ee29effcb1f2c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Basis functions</topic><topic>Boundary conditions</topic><topic>Eddy currents</topic><topic>Electric currents</topic><topic>Galerkin method</topic><topic>Magnetic fields</topic><topic>Magnetic vector potentials</topic><topic>Mass matrix</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Studies</topic><topic>Time series</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Außerhofer, S.</creatorcontrib><creatorcontrib>Bíró, O.</creatorcontrib><creatorcontrib>Preis, K.</creatorcontrib><collection>CrossRef</collection><collection>Global News & ABI/Inform Professional</collection><collection>Trade PRO</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Access via ABI/INFORM (ProQuest)</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Professional Standard</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ABI/INFORM Collection China</collection><collection>ProQuest Central Basic</collection><jtitle>Compel</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Außerhofer, S.</au><au>Bíró, O.</au><au>Preis, K.</au><au>Bíró David A. Lowther, Oszkár</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Discontinuous Galerkin formulation for eddy-current problems</atitle><jtitle>Compel</jtitle><date>2009-07-10</date><risdate>2009</risdate><volume>28</volume><issue>4</issue><spage>1081</spage><epage>1090</epage><pages>1081-1090</pages><issn>0332-1649</issn><eissn>2054-5606</eissn><coden>CODUDU</coden><abstract>Purpose - The purpose of this paper is to describe a method for solving eddy current problems. Discontinuous basis functions are applied to conducting regions in eddy-current problems. This results in a block-diagonal mass matrix allowing explicit time stepping without having to solve large algebraic systems.Design methodology approach - The effect of the basis functions in the conducting region is limited to the respective finite element. This yields to a block-diagonal mass matrix, whereas each block in this matrix belongs to one finite element. In the nonconducting region, traditional finite elements are used which leads to well-conditioned system matrices. For the two regions, different time steps are used.Findings - To avoid instability, a term which penalizes the tangential jump of the magnetic vector potential A has to be added. A value for weighting this term is suggested and tested on a simple two dimensional example.Originality value - The proposed method leads to a potentially fast method for solving eddy-current problems.</abstract><cop>Bradford</cop><pub>Emerald Group Publishing Limited</pub><doi>10.1108/03321640910959125</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0332-1649 |
ispartof | Compel, 2009-07, Vol.28 (4), p.1081-1090 |
issn | 0332-1649 2054-5606 |
language | eng |
recordid | cdi_proquest_journals_2439000074 |
source | Emerald A-Z Current Journals |
subjects | Basis functions Boundary conditions Eddy currents Electric currents Galerkin method Magnetic fields Magnetic vector potentials Mass matrix Mathematical analysis Mathematical models Studies Time series |
title | Discontinuous Galerkin formulation for eddy-current problems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T20%3A49%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Discontinuous%20Galerkin%20formulation%20for%20eddy-current%20problems&rft.jtitle=Compel&rft.au=Au%C3%9Ferhofer,%20S.&rft.date=2009-07-10&rft.volume=28&rft.issue=4&rft.spage=1081&rft.epage=1090&rft.pages=1081-1090&rft.issn=0332-1649&rft.eissn=2054-5606&rft.coden=CODUDU&rft_id=info:doi/10.1108/03321640910959125&rft_dat=%3Cproquest_cross%3E2439000074%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=209931027&rft_id=info:pmid/&rfr_iscdi=true |