Characterization of an operational quantum resource in a critical many-body system

Quantum many-body systems have been extensively studied from the perspective of quantum technology, and conversely, critical phenomena in such systems have been characterized by operationally relevant resources like entanglement. In this paper, we investigate robustness of magic (RoM), the resource...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:New journal of physics 2020-08, Vol.22 (8), p.83077
Hauptverfasser: Sarkar, S, Mukhopadhyay, C, Bayat, A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 8
container_start_page 83077
container_title New journal of physics
container_volume 22
creator Sarkar, S
Mukhopadhyay, C
Bayat, A
description Quantum many-body systems have been extensively studied from the perspective of quantum technology, and conversely, critical phenomena in such systems have been characterized by operationally relevant resources like entanglement. In this paper, we investigate robustness of magic (RoM), the resource in magic state injection based quantum computation schemes, in the context of the transverse field anisotropic XY model. We show that the the factorizable ground state in the symmetry broken configuration is composed of an enormous number of highly magical H states. We find the existence of a point very near the quantum critical point where magic contained explicitly in the correlation between two distant qubits attains a sharp maxima. Unlike bipartite entanglement, this persists over very long distances, capturing the presence of long range correlation near the phase transition. We derive scaling laws and extract corresponding exponents around criticality. Finally, we study the effect of temperature on two-qubit RoM and show that it reveals a crossover between dominance of quantum and thermal fluctuations.
doi_str_mv 10.1088/1367-2630/aba919
format Article
fullrecord <record><control><sourceid>proquest_iop_j</sourceid><recordid>TN_cdi_proquest_journals_2438998987</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_d27106c9339e4ab4af902a0818289225</doaj_id><sourcerecordid>2438998987</sourcerecordid><originalsourceid>FETCH-LOGICAL-c482t-49f25e938249ce90b479c6ec6d1ceff725e2b3cfddaaed156c92012c8360407d3</originalsourceid><addsrcrecordid>eNp1kbtPwzAQxi0EEqWwM1piJdSvJvaIKh6VKiEhmK2L7UCqNk7tZAh_PW6DCguLH3ff_ez7DqFrSu4okXJGeV5kLOdkBiUoqk7Q5Bg6_XM-RxcxrgmhVDI2Qa-LTwhgOhfqL-hq32BfYUhr68LhDhu866Hp-i0OLvo-GIfrBgM2oe5qk9JbaIas9HbAcYid216iswo20V397FP0_vjwtnjOVi9Py8X9KjNCsi4TqmJzp7hkQhmnSCkKZXJnckuNq6oiJVnJTWUtgLN0nhvFCGVG8pwIUlg-RcuRaz2sdRvqLYRBe6j1IeDDh4aQvrhx2rKCkgTgXDkBpYBKEQZEJg-kYmyeWDcjqw1-17vY6XVqNTUfNRNcKiWVLJKKjCoTfIzBVcdXKdH7Kei9zXpvsx6nkEpux5Lat7_Mf-XfvcCICw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2438998987</pqid></control><display><type>article</type><title>Characterization of an operational quantum resource in a critical many-body system</title><source>IOP Publishing Free Content</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>IOPscience extra</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Sarkar, S ; Mukhopadhyay, C ; Bayat, A</creator><creatorcontrib>Sarkar, S ; Mukhopadhyay, C ; Bayat, A</creatorcontrib><description>Quantum many-body systems have been extensively studied from the perspective of quantum technology, and conversely, critical phenomena in such systems have been characterized by operationally relevant resources like entanglement. In this paper, we investigate robustness of magic (RoM), the resource in magic state injection based quantum computation schemes, in the context of the transverse field anisotropic XY model. We show that the the factorizable ground state in the symmetry broken configuration is composed of an enormous number of highly magical H states. We find the existence of a point very near the quantum critical point where magic contained explicitly in the correlation between two distant qubits attains a sharp maxima. Unlike bipartite entanglement, this persists over very long distances, capturing the presence of long range correlation near the phase transition. We derive scaling laws and extract corresponding exponents around criticality. Finally, we study the effect of temperature on two-qubit RoM and show that it reveals a crossover between dominance of quantum and thermal fluctuations.</description><identifier>ISSN: 1367-2630</identifier><identifier>EISSN: 1367-2630</identifier><identifier>DOI: 10.1088/1367-2630/aba919</identifier><identifier>CODEN: NJOPFM</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Critical phenomena ; Critical point ; magic state formalism ; Phase transitions ; Physics ; Quantum computing ; Quantum entanglement ; quantum phase transition ; Qubits (quantum computing) ; Scaling laws ; Temperature effects ; XY spin chain</subject><ispartof>New journal of physics, 2020-08, Vol.22 (8), p.83077</ispartof><rights>2020 The Author(s). Published by IOP Publishing Ltd on behalf of the Institute of Physics and Deutsche Physikalische Gesellschaft</rights><rights>2020. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c482t-49f25e938249ce90b479c6ec6d1ceff725e2b3cfddaaed156c92012c8360407d3</citedby><cites>FETCH-LOGICAL-c482t-49f25e938249ce90b479c6ec6d1ceff725e2b3cfddaaed156c92012c8360407d3</cites><orcidid>0000-0003-3852-4558 ; 0000-0002-4486-9061 ; 0000-0002-2933-2792</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1367-2630/aba919/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>314,776,780,860,2096,27901,27902,38845,38867,53815,53842</link.rule.ids></links><search><creatorcontrib>Sarkar, S</creatorcontrib><creatorcontrib>Mukhopadhyay, C</creatorcontrib><creatorcontrib>Bayat, A</creatorcontrib><title>Characterization of an operational quantum resource in a critical many-body system</title><title>New journal of physics</title><addtitle>NJP</addtitle><addtitle>New J. Phys</addtitle><description>Quantum many-body systems have been extensively studied from the perspective of quantum technology, and conversely, critical phenomena in such systems have been characterized by operationally relevant resources like entanglement. In this paper, we investigate robustness of magic (RoM), the resource in magic state injection based quantum computation schemes, in the context of the transverse field anisotropic XY model. We show that the the factorizable ground state in the symmetry broken configuration is composed of an enormous number of highly magical H states. We find the existence of a point very near the quantum critical point where magic contained explicitly in the correlation between two distant qubits attains a sharp maxima. Unlike bipartite entanglement, this persists over very long distances, capturing the presence of long range correlation near the phase transition. We derive scaling laws and extract corresponding exponents around criticality. Finally, we study the effect of temperature on two-qubit RoM and show that it reveals a crossover between dominance of quantum and thermal fluctuations.</description><subject>Critical phenomena</subject><subject>Critical point</subject><subject>magic state formalism</subject><subject>Phase transitions</subject><subject>Physics</subject><subject>Quantum computing</subject><subject>Quantum entanglement</subject><subject>quantum phase transition</subject><subject>Qubits (quantum computing)</subject><subject>Scaling laws</subject><subject>Temperature effects</subject><subject>XY spin chain</subject><issn>1367-2630</issn><issn>1367-2630</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNp1kbtPwzAQxi0EEqWwM1piJdSvJvaIKh6VKiEhmK2L7UCqNk7tZAh_PW6DCguLH3ff_ez7DqFrSu4okXJGeV5kLOdkBiUoqk7Q5Bg6_XM-RxcxrgmhVDI2Qa-LTwhgOhfqL-hq32BfYUhr68LhDhu866Hp-i0OLvo-GIfrBgM2oe5qk9JbaIas9HbAcYid216iswo20V397FP0_vjwtnjOVi9Py8X9KjNCsi4TqmJzp7hkQhmnSCkKZXJnckuNq6oiJVnJTWUtgLN0nhvFCGVG8pwIUlg-RcuRaz2sdRvqLYRBe6j1IeDDh4aQvrhx2rKCkgTgXDkBpYBKEQZEJg-kYmyeWDcjqw1-17vY6XVqNTUfNRNcKiWVLJKKjCoTfIzBVcdXKdH7Kei9zXpvsx6nkEpux5Lat7_Mf-XfvcCICw</recordid><startdate>20200801</startdate><enddate>20200801</enddate><creator>Sarkar, S</creator><creator>Mukhopadhyay, C</creator><creator>Bayat, A</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>H8D</scope><scope>L7M</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-3852-4558</orcidid><orcidid>https://orcid.org/0000-0002-4486-9061</orcidid><orcidid>https://orcid.org/0000-0002-2933-2792</orcidid></search><sort><creationdate>20200801</creationdate><title>Characterization of an operational quantum resource in a critical many-body system</title><author>Sarkar, S ; Mukhopadhyay, C ; Bayat, A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c482t-49f25e938249ce90b479c6ec6d1ceff725e2b3cfddaaed156c92012c8360407d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Critical phenomena</topic><topic>Critical point</topic><topic>magic state formalism</topic><topic>Phase transitions</topic><topic>Physics</topic><topic>Quantum computing</topic><topic>Quantum entanglement</topic><topic>quantum phase transition</topic><topic>Qubits (quantum computing)</topic><topic>Scaling laws</topic><topic>Temperature effects</topic><topic>XY spin chain</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sarkar, S</creatorcontrib><creatorcontrib>Mukhopadhyay, C</creatorcontrib><creatorcontrib>Bayat, A</creatorcontrib><collection>IOP Publishing Free Content</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>New journal of physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sarkar, S</au><au>Mukhopadhyay, C</au><au>Bayat, A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Characterization of an operational quantum resource in a critical many-body system</atitle><jtitle>New journal of physics</jtitle><stitle>NJP</stitle><addtitle>New J. Phys</addtitle><date>2020-08-01</date><risdate>2020</risdate><volume>22</volume><issue>8</issue><spage>83077</spage><pages>83077-</pages><issn>1367-2630</issn><eissn>1367-2630</eissn><coden>NJOPFM</coden><abstract>Quantum many-body systems have been extensively studied from the perspective of quantum technology, and conversely, critical phenomena in such systems have been characterized by operationally relevant resources like entanglement. In this paper, we investigate robustness of magic (RoM), the resource in magic state injection based quantum computation schemes, in the context of the transverse field anisotropic XY model. We show that the the factorizable ground state in the symmetry broken configuration is composed of an enormous number of highly magical H states. We find the existence of a point very near the quantum critical point where magic contained explicitly in the correlation between two distant qubits attains a sharp maxima. Unlike bipartite entanglement, this persists over very long distances, capturing the presence of long range correlation near the phase transition. We derive scaling laws and extract corresponding exponents around criticality. Finally, we study the effect of temperature on two-qubit RoM and show that it reveals a crossover between dominance of quantum and thermal fluctuations.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/1367-2630/aba919</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0003-3852-4558</orcidid><orcidid>https://orcid.org/0000-0002-4486-9061</orcidid><orcidid>https://orcid.org/0000-0002-2933-2792</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1367-2630
ispartof New journal of physics, 2020-08, Vol.22 (8), p.83077
issn 1367-2630
1367-2630
language eng
recordid cdi_proquest_journals_2438998987
source IOP Publishing Free Content; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; IOPscience extra; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Critical phenomena
Critical point
magic state formalism
Phase transitions
Physics
Quantum computing
Quantum entanglement
quantum phase transition
Qubits (quantum computing)
Scaling laws
Temperature effects
XY spin chain
title Characterization of an operational quantum resource in a critical many-body system
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T02%3A58%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_iop_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Characterization%20of%20an%20operational%20quantum%20resource%20in%20a%20critical%20many-body%20system&rft.jtitle=New%20journal%20of%20physics&rft.au=Sarkar,%20S&rft.date=2020-08-01&rft.volume=22&rft.issue=8&rft.spage=83077&rft.pages=83077-&rft.issn=1367-2630&rft.eissn=1367-2630&rft.coden=NJOPFM&rft_id=info:doi/10.1088/1367-2630/aba919&rft_dat=%3Cproquest_iop_j%3E2438998987%3C/proquest_iop_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2438998987&rft_id=info:pmid/&rft_doaj_id=oai_doaj_org_article_d27106c9339e4ab4af902a0818289225&rfr_iscdi=true