High temperature nanoindentation of tungsten: Modelling and experimental validation

Knowledge of mechanical properties of the tungsten surface region is extremely important for its application as first wall materials in plasma-facing components for nuclear fusion devices (e.g. ITER). Since tungsten is intrinsically brittle at room temperature, characterization of its ductile proper...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of refractory metals & hard materials 2020-06, Vol.89, p.105222, Article 105222
Hauptverfasser: Terentyev, D., Xiao, Xiazi, Lemeshko, S., Hangen, Ude, Zhurkin, E.E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 105222
container_title International journal of refractory metals & hard materials
container_volume 89
creator Terentyev, D.
Xiao, Xiazi
Lemeshko, S.
Hangen, Ude
Zhurkin, E.E.
description Knowledge of mechanical properties of the tungsten surface region is extremely important for its application as first wall materials in plasma-facing components for nuclear fusion devices (e.g. ITER). Since tungsten is intrinsically brittle at room temperature, characterization of its ductile properties is possible only above the so-called ductile-to-brittle transition temperature (DBTT), which is above 500–700 K. This is why the development and qualification of instrumented hardness measurements at elevated temperature is an important task to enable the characterization of tungsten properties after exposure to heat shocks, plasma beam and ion irradiation, which all together mimic the actual operation conditions of nuclear fusion. We have performed nanoindentation measurements on tungsten in the constant stiffness mode using Bruker stage developed for high temperature operation with oxygen protective environment. Commercially pure tungsten of ITER specification is studied in the as-produced and as-recrystallized conditions to deduce the impact of the texture and forging on the hardness. The obtained results are analysed by means of crystal plasticity finite element method (CPFEM) model to subtract the constitutive laws for the elasto-plastic deformation and derive the strengthening term attributed to the contribution coming from statistically stored dislocations and grain boundaries. •Hardness measured up to 600C agrees with earlier published results.•Temperature induced softening is observed.•FEM simulations agree well with nanoindentation.
doi_str_mv 10.1016/j.ijrmhm.2020.105222
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2438990831</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0263436820300986</els_id><sourcerecordid>2438990831</sourcerecordid><originalsourceid>FETCH-LOGICAL-c334t-b1158f3873055c1fe64c50865c6e5d8178961b4f8a469a25d3a05c08d46b2f923</originalsourceid><addsrcrecordid>eNp9kEtPwzAQhC0EEqXwDzhE4pziR-w6HJBQxUsq4gCcLdfetI4Sp9hOBf-ehHDmtNJqZnb2Q-iS4AXBRFzXC1eHdtcuKKbjilNKj9CMUsJyVpLlMZphKlheMCFP0VmMNcZYlILM0NuT2-6yBO0egk59gMxr3zlvwSedXOezrspS77cxgb_JXjoLTeP8NtPeZvA1uFw7SpvsoBtnfy3n6KTSTYSLvzlHHw_376unfP36-Ly6W-eGsSLlG0K4rJhcMsy5IRWIwnAsBTcCuJVkKYeGm6KSuhClptwyjbnB0hZiQ6uSsjm6mnL3ofvsISZVd33ww0lFCybLEktGBlUxqUzoYgxQqf3QWYdvRbAa8alaTfjUiE9N-Abb7WSD4YODg6CiceANWBfAJGU793_ADyeheoQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2438990831</pqid></control><display><type>article</type><title>High temperature nanoindentation of tungsten: Modelling and experimental validation</title><source>Elsevier ScienceDirect Journals</source><creator>Terentyev, D. ; Xiao, Xiazi ; Lemeshko, S. ; Hangen, Ude ; Zhurkin, E.E.</creator><creatorcontrib>Terentyev, D. ; Xiao, Xiazi ; Lemeshko, S. ; Hangen, Ude ; Zhurkin, E.E.</creatorcontrib><description>Knowledge of mechanical properties of the tungsten surface region is extremely important for its application as first wall materials in plasma-facing components for nuclear fusion devices (e.g. ITER). Since tungsten is intrinsically brittle at room temperature, characterization of its ductile properties is possible only above the so-called ductile-to-brittle transition temperature (DBTT), which is above 500–700 K. This is why the development and qualification of instrumented hardness measurements at elevated temperature is an important task to enable the characterization of tungsten properties after exposure to heat shocks, plasma beam and ion irradiation, which all together mimic the actual operation conditions of nuclear fusion. We have performed nanoindentation measurements on tungsten in the constant stiffness mode using Bruker stage developed for high temperature operation with oxygen protective environment. Commercially pure tungsten of ITER specification is studied in the as-produced and as-recrystallized conditions to deduce the impact of the texture and forging on the hardness. The obtained results are analysed by means of crystal plasticity finite element method (CPFEM) model to subtract the constitutive laws for the elasto-plastic deformation and derive the strengthening term attributed to the contribution coming from statistically stored dislocations and grain boundaries. •Hardness measured up to 600C agrees with earlier published results.•Temperature induced softening is observed.•FEM simulations agree well with nanoindentation.</description><identifier>ISSN: 0263-4368</identifier><identifier>EISSN: 2213-3917</identifier><identifier>DOI: 10.1016/j.ijrmhm.2020.105222</identifier><language>eng</language><publisher>Shrewsbury: Elsevier Ltd</publisher><subject>Brittleness ; CPFEM ; Dislocations ; Ductile-brittle transition ; Finite element method ; Forging ; Grain boundaries ; Hall-Petch ; Hardness ; High temperature ; Ion irradiation ; Mechanical properties ; Nanoindentation ; Nuclear fusion ; Nuclear power plants ; Plastic deformation ; Recrystallization ; Room temperature ; Stiffness ; Transition temperature ; Tungsten</subject><ispartof>International journal of refractory metals &amp; hard materials, 2020-06, Vol.89, p.105222, Article 105222</ispartof><rights>2020</rights><rights>Copyright Elsevier BV Jun 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c334t-b1158f3873055c1fe64c50865c6e5d8178961b4f8a469a25d3a05c08d46b2f923</citedby><cites>FETCH-LOGICAL-c334t-b1158f3873055c1fe64c50865c6e5d8178961b4f8a469a25d3a05c08d46b2f923</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0263436820300986$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Terentyev, D.</creatorcontrib><creatorcontrib>Xiao, Xiazi</creatorcontrib><creatorcontrib>Lemeshko, S.</creatorcontrib><creatorcontrib>Hangen, Ude</creatorcontrib><creatorcontrib>Zhurkin, E.E.</creatorcontrib><title>High temperature nanoindentation of tungsten: Modelling and experimental validation</title><title>International journal of refractory metals &amp; hard materials</title><description>Knowledge of mechanical properties of the tungsten surface region is extremely important for its application as first wall materials in plasma-facing components for nuclear fusion devices (e.g. ITER). Since tungsten is intrinsically brittle at room temperature, characterization of its ductile properties is possible only above the so-called ductile-to-brittle transition temperature (DBTT), which is above 500–700 K. This is why the development and qualification of instrumented hardness measurements at elevated temperature is an important task to enable the characterization of tungsten properties after exposure to heat shocks, plasma beam and ion irradiation, which all together mimic the actual operation conditions of nuclear fusion. We have performed nanoindentation measurements on tungsten in the constant stiffness mode using Bruker stage developed for high temperature operation with oxygen protective environment. Commercially pure tungsten of ITER specification is studied in the as-produced and as-recrystallized conditions to deduce the impact of the texture and forging on the hardness. The obtained results are analysed by means of crystal plasticity finite element method (CPFEM) model to subtract the constitutive laws for the elasto-plastic deformation and derive the strengthening term attributed to the contribution coming from statistically stored dislocations and grain boundaries. •Hardness measured up to 600C agrees with earlier published results.•Temperature induced softening is observed.•FEM simulations agree well with nanoindentation.</description><subject>Brittleness</subject><subject>CPFEM</subject><subject>Dislocations</subject><subject>Ductile-brittle transition</subject><subject>Finite element method</subject><subject>Forging</subject><subject>Grain boundaries</subject><subject>Hall-Petch</subject><subject>Hardness</subject><subject>High temperature</subject><subject>Ion irradiation</subject><subject>Mechanical properties</subject><subject>Nanoindentation</subject><subject>Nuclear fusion</subject><subject>Nuclear power plants</subject><subject>Plastic deformation</subject><subject>Recrystallization</subject><subject>Room temperature</subject><subject>Stiffness</subject><subject>Transition temperature</subject><subject>Tungsten</subject><issn>0263-4368</issn><issn>2213-3917</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kEtPwzAQhC0EEqXwDzhE4pziR-w6HJBQxUsq4gCcLdfetI4Sp9hOBf-ehHDmtNJqZnb2Q-iS4AXBRFzXC1eHdtcuKKbjilNKj9CMUsJyVpLlMZphKlheMCFP0VmMNcZYlILM0NuT2-6yBO0egk59gMxr3zlvwSedXOezrspS77cxgb_JXjoLTeP8NtPeZvA1uFw7SpvsoBtnfy3n6KTSTYSLvzlHHw_376unfP36-Ly6W-eGsSLlG0K4rJhcMsy5IRWIwnAsBTcCuJVkKYeGm6KSuhClptwyjbnB0hZiQ6uSsjm6mnL3ofvsISZVd33ww0lFCybLEktGBlUxqUzoYgxQqf3QWYdvRbAa8alaTfjUiE9N-Abb7WSD4YODg6CiceANWBfAJGU793_ADyeheoQ</recordid><startdate>202006</startdate><enddate>202006</enddate><creator>Terentyev, D.</creator><creator>Xiao, Xiazi</creator><creator>Lemeshko, S.</creator><creator>Hangen, Ude</creator><creator>Zhurkin, E.E.</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QQ</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>202006</creationdate><title>High temperature nanoindentation of tungsten: Modelling and experimental validation</title><author>Terentyev, D. ; Xiao, Xiazi ; Lemeshko, S. ; Hangen, Ude ; Zhurkin, E.E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c334t-b1158f3873055c1fe64c50865c6e5d8178961b4f8a469a25d3a05c08d46b2f923</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Brittleness</topic><topic>CPFEM</topic><topic>Dislocations</topic><topic>Ductile-brittle transition</topic><topic>Finite element method</topic><topic>Forging</topic><topic>Grain boundaries</topic><topic>Hall-Petch</topic><topic>Hardness</topic><topic>High temperature</topic><topic>Ion irradiation</topic><topic>Mechanical properties</topic><topic>Nanoindentation</topic><topic>Nuclear fusion</topic><topic>Nuclear power plants</topic><topic>Plastic deformation</topic><topic>Recrystallization</topic><topic>Room temperature</topic><topic>Stiffness</topic><topic>Transition temperature</topic><topic>Tungsten</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Terentyev, D.</creatorcontrib><creatorcontrib>Xiao, Xiazi</creatorcontrib><creatorcontrib>Lemeshko, S.</creatorcontrib><creatorcontrib>Hangen, Ude</creatorcontrib><creatorcontrib>Zhurkin, E.E.</creatorcontrib><collection>CrossRef</collection><collection>Ceramic Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>International journal of refractory metals &amp; hard materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Terentyev, D.</au><au>Xiao, Xiazi</au><au>Lemeshko, S.</au><au>Hangen, Ude</au><au>Zhurkin, E.E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High temperature nanoindentation of tungsten: Modelling and experimental validation</atitle><jtitle>International journal of refractory metals &amp; hard materials</jtitle><date>2020-06</date><risdate>2020</risdate><volume>89</volume><spage>105222</spage><pages>105222-</pages><artnum>105222</artnum><issn>0263-4368</issn><eissn>2213-3917</eissn><abstract>Knowledge of mechanical properties of the tungsten surface region is extremely important for its application as first wall materials in plasma-facing components for nuclear fusion devices (e.g. ITER). Since tungsten is intrinsically brittle at room temperature, characterization of its ductile properties is possible only above the so-called ductile-to-brittle transition temperature (DBTT), which is above 500–700 K. This is why the development and qualification of instrumented hardness measurements at elevated temperature is an important task to enable the characterization of tungsten properties after exposure to heat shocks, plasma beam and ion irradiation, which all together mimic the actual operation conditions of nuclear fusion. We have performed nanoindentation measurements on tungsten in the constant stiffness mode using Bruker stage developed for high temperature operation with oxygen protective environment. Commercially pure tungsten of ITER specification is studied in the as-produced and as-recrystallized conditions to deduce the impact of the texture and forging on the hardness. The obtained results are analysed by means of crystal plasticity finite element method (CPFEM) model to subtract the constitutive laws for the elasto-plastic deformation and derive the strengthening term attributed to the contribution coming from statistically stored dislocations and grain boundaries. •Hardness measured up to 600C agrees with earlier published results.•Temperature induced softening is observed.•FEM simulations agree well with nanoindentation.</abstract><cop>Shrewsbury</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.ijrmhm.2020.105222</doi></addata></record>
fulltext fulltext
identifier ISSN: 0263-4368
ispartof International journal of refractory metals & hard materials, 2020-06, Vol.89, p.105222, Article 105222
issn 0263-4368
2213-3917
language eng
recordid cdi_proquest_journals_2438990831
source Elsevier ScienceDirect Journals
subjects Brittleness
CPFEM
Dislocations
Ductile-brittle transition
Finite element method
Forging
Grain boundaries
Hall-Petch
Hardness
High temperature
Ion irradiation
Mechanical properties
Nanoindentation
Nuclear fusion
Nuclear power plants
Plastic deformation
Recrystallization
Room temperature
Stiffness
Transition temperature
Tungsten
title High temperature nanoindentation of tungsten: Modelling and experimental validation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T21%3A50%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High%20temperature%20nanoindentation%20of%20tungsten:%20Modelling%20and%20experimental%20validation&rft.jtitle=International%20journal%20of%20refractory%20metals%20&%20hard%20materials&rft.au=Terentyev,%20D.&rft.date=2020-06&rft.volume=89&rft.spage=105222&rft.pages=105222-&rft.artnum=105222&rft.issn=0263-4368&rft.eissn=2213-3917&rft_id=info:doi/10.1016/j.ijrmhm.2020.105222&rft_dat=%3Cproquest_cross%3E2438990831%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2438990831&rft_id=info:pmid/&rft_els_id=S0263436820300986&rfr_iscdi=true