High temperature nanoindentation of tungsten: Modelling and experimental validation
Knowledge of mechanical properties of the tungsten surface region is extremely important for its application as first wall materials in plasma-facing components for nuclear fusion devices (e.g. ITER). Since tungsten is intrinsically brittle at room temperature, characterization of its ductile proper...
Gespeichert in:
Veröffentlicht in: | International journal of refractory metals & hard materials 2020-06, Vol.89, p.105222, Article 105222 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 105222 |
container_title | International journal of refractory metals & hard materials |
container_volume | 89 |
creator | Terentyev, D. Xiao, Xiazi Lemeshko, S. Hangen, Ude Zhurkin, E.E. |
description | Knowledge of mechanical properties of the tungsten surface region is extremely important for its application as first wall materials in plasma-facing components for nuclear fusion devices (e.g. ITER). Since tungsten is intrinsically brittle at room temperature, characterization of its ductile properties is possible only above the so-called ductile-to-brittle transition temperature (DBTT), which is above 500–700 K. This is why the development and qualification of instrumented hardness measurements at elevated temperature is an important task to enable the characterization of tungsten properties after exposure to heat shocks, plasma beam and ion irradiation, which all together mimic the actual operation conditions of nuclear fusion. We have performed nanoindentation measurements on tungsten in the constant stiffness mode using Bruker stage developed for high temperature operation with oxygen protective environment. Commercially pure tungsten of ITER specification is studied in the as-produced and as-recrystallized conditions to deduce the impact of the texture and forging on the hardness. The obtained results are analysed by means of crystal plasticity finite element method (CPFEM) model to subtract the constitutive laws for the elasto-plastic deformation and derive the strengthening term attributed to the contribution coming from statistically stored dislocations and grain boundaries.
•Hardness measured up to 600C agrees with earlier published results.•Temperature induced softening is observed.•FEM simulations agree well with nanoindentation. |
doi_str_mv | 10.1016/j.ijrmhm.2020.105222 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2438990831</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0263436820300986</els_id><sourcerecordid>2438990831</sourcerecordid><originalsourceid>FETCH-LOGICAL-c334t-b1158f3873055c1fe64c50865c6e5d8178961b4f8a469a25d3a05c08d46b2f923</originalsourceid><addsrcrecordid>eNp9kEtPwzAQhC0EEqXwDzhE4pziR-w6HJBQxUsq4gCcLdfetI4Sp9hOBf-ehHDmtNJqZnb2Q-iS4AXBRFzXC1eHdtcuKKbjilNKj9CMUsJyVpLlMZphKlheMCFP0VmMNcZYlILM0NuT2-6yBO0egk59gMxr3zlvwSedXOezrspS77cxgb_JXjoLTeP8NtPeZvA1uFw7SpvsoBtnfy3n6KTSTYSLvzlHHw_376unfP36-Ly6W-eGsSLlG0K4rJhcMsy5IRWIwnAsBTcCuJVkKYeGm6KSuhClptwyjbnB0hZiQ6uSsjm6mnL3ofvsISZVd33ww0lFCybLEktGBlUxqUzoYgxQqf3QWYdvRbAa8alaTfjUiE9N-Abb7WSD4YODg6CiceANWBfAJGU793_ADyeheoQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2438990831</pqid></control><display><type>article</type><title>High temperature nanoindentation of tungsten: Modelling and experimental validation</title><source>Elsevier ScienceDirect Journals</source><creator>Terentyev, D. ; Xiao, Xiazi ; Lemeshko, S. ; Hangen, Ude ; Zhurkin, E.E.</creator><creatorcontrib>Terentyev, D. ; Xiao, Xiazi ; Lemeshko, S. ; Hangen, Ude ; Zhurkin, E.E.</creatorcontrib><description>Knowledge of mechanical properties of the tungsten surface region is extremely important for its application as first wall materials in plasma-facing components for nuclear fusion devices (e.g. ITER). Since tungsten is intrinsically brittle at room temperature, characterization of its ductile properties is possible only above the so-called ductile-to-brittle transition temperature (DBTT), which is above 500–700 K. This is why the development and qualification of instrumented hardness measurements at elevated temperature is an important task to enable the characterization of tungsten properties after exposure to heat shocks, plasma beam and ion irradiation, which all together mimic the actual operation conditions of nuclear fusion. We have performed nanoindentation measurements on tungsten in the constant stiffness mode using Bruker stage developed for high temperature operation with oxygen protective environment. Commercially pure tungsten of ITER specification is studied in the as-produced and as-recrystallized conditions to deduce the impact of the texture and forging on the hardness. The obtained results are analysed by means of crystal plasticity finite element method (CPFEM) model to subtract the constitutive laws for the elasto-plastic deformation and derive the strengthening term attributed to the contribution coming from statistically stored dislocations and grain boundaries.
•Hardness measured up to 600C agrees with earlier published results.•Temperature induced softening is observed.•FEM simulations agree well with nanoindentation.</description><identifier>ISSN: 0263-4368</identifier><identifier>EISSN: 2213-3917</identifier><identifier>DOI: 10.1016/j.ijrmhm.2020.105222</identifier><language>eng</language><publisher>Shrewsbury: Elsevier Ltd</publisher><subject>Brittleness ; CPFEM ; Dislocations ; Ductile-brittle transition ; Finite element method ; Forging ; Grain boundaries ; Hall-Petch ; Hardness ; High temperature ; Ion irradiation ; Mechanical properties ; Nanoindentation ; Nuclear fusion ; Nuclear power plants ; Plastic deformation ; Recrystallization ; Room temperature ; Stiffness ; Transition temperature ; Tungsten</subject><ispartof>International journal of refractory metals & hard materials, 2020-06, Vol.89, p.105222, Article 105222</ispartof><rights>2020</rights><rights>Copyright Elsevier BV Jun 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c334t-b1158f3873055c1fe64c50865c6e5d8178961b4f8a469a25d3a05c08d46b2f923</citedby><cites>FETCH-LOGICAL-c334t-b1158f3873055c1fe64c50865c6e5d8178961b4f8a469a25d3a05c08d46b2f923</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0263436820300986$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Terentyev, D.</creatorcontrib><creatorcontrib>Xiao, Xiazi</creatorcontrib><creatorcontrib>Lemeshko, S.</creatorcontrib><creatorcontrib>Hangen, Ude</creatorcontrib><creatorcontrib>Zhurkin, E.E.</creatorcontrib><title>High temperature nanoindentation of tungsten: Modelling and experimental validation</title><title>International journal of refractory metals & hard materials</title><description>Knowledge of mechanical properties of the tungsten surface region is extremely important for its application as first wall materials in plasma-facing components for nuclear fusion devices (e.g. ITER). Since tungsten is intrinsically brittle at room temperature, characterization of its ductile properties is possible only above the so-called ductile-to-brittle transition temperature (DBTT), which is above 500–700 K. This is why the development and qualification of instrumented hardness measurements at elevated temperature is an important task to enable the characterization of tungsten properties after exposure to heat shocks, plasma beam and ion irradiation, which all together mimic the actual operation conditions of nuclear fusion. We have performed nanoindentation measurements on tungsten in the constant stiffness mode using Bruker stage developed for high temperature operation with oxygen protective environment. Commercially pure tungsten of ITER specification is studied in the as-produced and as-recrystallized conditions to deduce the impact of the texture and forging on the hardness. The obtained results are analysed by means of crystal plasticity finite element method (CPFEM) model to subtract the constitutive laws for the elasto-plastic deformation and derive the strengthening term attributed to the contribution coming from statistically stored dislocations and grain boundaries.
•Hardness measured up to 600C agrees with earlier published results.•Temperature induced softening is observed.•FEM simulations agree well with nanoindentation.</description><subject>Brittleness</subject><subject>CPFEM</subject><subject>Dislocations</subject><subject>Ductile-brittle transition</subject><subject>Finite element method</subject><subject>Forging</subject><subject>Grain boundaries</subject><subject>Hall-Petch</subject><subject>Hardness</subject><subject>High temperature</subject><subject>Ion irradiation</subject><subject>Mechanical properties</subject><subject>Nanoindentation</subject><subject>Nuclear fusion</subject><subject>Nuclear power plants</subject><subject>Plastic deformation</subject><subject>Recrystallization</subject><subject>Room temperature</subject><subject>Stiffness</subject><subject>Transition temperature</subject><subject>Tungsten</subject><issn>0263-4368</issn><issn>2213-3917</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kEtPwzAQhC0EEqXwDzhE4pziR-w6HJBQxUsq4gCcLdfetI4Sp9hOBf-ehHDmtNJqZnb2Q-iS4AXBRFzXC1eHdtcuKKbjilNKj9CMUsJyVpLlMZphKlheMCFP0VmMNcZYlILM0NuT2-6yBO0egk59gMxr3zlvwSedXOezrspS77cxgb_JXjoLTeP8NtPeZvA1uFw7SpvsoBtnfy3n6KTSTYSLvzlHHw_376unfP36-Ly6W-eGsSLlG0K4rJhcMsy5IRWIwnAsBTcCuJVkKYeGm6KSuhClptwyjbnB0hZiQ6uSsjm6mnL3ofvsISZVd33ww0lFCybLEktGBlUxqUzoYgxQqf3QWYdvRbAa8alaTfjUiE9N-Abb7WSD4YODg6CiceANWBfAJGU793_ADyeheoQ</recordid><startdate>202006</startdate><enddate>202006</enddate><creator>Terentyev, D.</creator><creator>Xiao, Xiazi</creator><creator>Lemeshko, S.</creator><creator>Hangen, Ude</creator><creator>Zhurkin, E.E.</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QQ</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>202006</creationdate><title>High temperature nanoindentation of tungsten: Modelling and experimental validation</title><author>Terentyev, D. ; Xiao, Xiazi ; Lemeshko, S. ; Hangen, Ude ; Zhurkin, E.E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c334t-b1158f3873055c1fe64c50865c6e5d8178961b4f8a469a25d3a05c08d46b2f923</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Brittleness</topic><topic>CPFEM</topic><topic>Dislocations</topic><topic>Ductile-brittle transition</topic><topic>Finite element method</topic><topic>Forging</topic><topic>Grain boundaries</topic><topic>Hall-Petch</topic><topic>Hardness</topic><topic>High temperature</topic><topic>Ion irradiation</topic><topic>Mechanical properties</topic><topic>Nanoindentation</topic><topic>Nuclear fusion</topic><topic>Nuclear power plants</topic><topic>Plastic deformation</topic><topic>Recrystallization</topic><topic>Room temperature</topic><topic>Stiffness</topic><topic>Transition temperature</topic><topic>Tungsten</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Terentyev, D.</creatorcontrib><creatorcontrib>Xiao, Xiazi</creatorcontrib><creatorcontrib>Lemeshko, S.</creatorcontrib><creatorcontrib>Hangen, Ude</creatorcontrib><creatorcontrib>Zhurkin, E.E.</creatorcontrib><collection>CrossRef</collection><collection>Ceramic Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>International journal of refractory metals & hard materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Terentyev, D.</au><au>Xiao, Xiazi</au><au>Lemeshko, S.</au><au>Hangen, Ude</au><au>Zhurkin, E.E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High temperature nanoindentation of tungsten: Modelling and experimental validation</atitle><jtitle>International journal of refractory metals & hard materials</jtitle><date>2020-06</date><risdate>2020</risdate><volume>89</volume><spage>105222</spage><pages>105222-</pages><artnum>105222</artnum><issn>0263-4368</issn><eissn>2213-3917</eissn><abstract>Knowledge of mechanical properties of the tungsten surface region is extremely important for its application as first wall materials in plasma-facing components for nuclear fusion devices (e.g. ITER). Since tungsten is intrinsically brittle at room temperature, characterization of its ductile properties is possible only above the so-called ductile-to-brittle transition temperature (DBTT), which is above 500–700 K. This is why the development and qualification of instrumented hardness measurements at elevated temperature is an important task to enable the characterization of tungsten properties after exposure to heat shocks, plasma beam and ion irradiation, which all together mimic the actual operation conditions of nuclear fusion. We have performed nanoindentation measurements on tungsten in the constant stiffness mode using Bruker stage developed for high temperature operation with oxygen protective environment. Commercially pure tungsten of ITER specification is studied in the as-produced and as-recrystallized conditions to deduce the impact of the texture and forging on the hardness. The obtained results are analysed by means of crystal plasticity finite element method (CPFEM) model to subtract the constitutive laws for the elasto-plastic deformation and derive the strengthening term attributed to the contribution coming from statistically stored dislocations and grain boundaries.
•Hardness measured up to 600C agrees with earlier published results.•Temperature induced softening is observed.•FEM simulations agree well with nanoindentation.</abstract><cop>Shrewsbury</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.ijrmhm.2020.105222</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0263-4368 |
ispartof | International journal of refractory metals & hard materials, 2020-06, Vol.89, p.105222, Article 105222 |
issn | 0263-4368 2213-3917 |
language | eng |
recordid | cdi_proquest_journals_2438990831 |
source | Elsevier ScienceDirect Journals |
subjects | Brittleness CPFEM Dislocations Ductile-brittle transition Finite element method Forging Grain boundaries Hall-Petch Hardness High temperature Ion irradiation Mechanical properties Nanoindentation Nuclear fusion Nuclear power plants Plastic deformation Recrystallization Room temperature Stiffness Transition temperature Tungsten |
title | High temperature nanoindentation of tungsten: Modelling and experimental validation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T21%3A50%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High%20temperature%20nanoindentation%20of%20tungsten:%20Modelling%20and%20experimental%20validation&rft.jtitle=International%20journal%20of%20refractory%20metals%20&%20hard%20materials&rft.au=Terentyev,%20D.&rft.date=2020-06&rft.volume=89&rft.spage=105222&rft.pages=105222-&rft.artnum=105222&rft.issn=0263-4368&rft.eissn=2213-3917&rft_id=info:doi/10.1016/j.ijrmhm.2020.105222&rft_dat=%3Cproquest_cross%3E2438990831%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2438990831&rft_id=info:pmid/&rft_els_id=S0263436820300986&rfr_iscdi=true |