A hybrid model based on data preprocessing strategy and error correction system for wind speed forecasting

•Develop a new error correction system for decomposition based forecasting model.•Design a quasi-real-time decomposition strategy to obtain errors of each subseries.•Construct VMD-ARIMA to correct the predicted errors of each subseries.•Experiments validate the forecasting performance of the propose...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Energy conversion and management 2020-05, Vol.212, p.112779, Article 112779
Hauptverfasser: Deng, Ying, Wang, Bofu, Lu, Zhiming
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 112779
container_title Energy conversion and management
container_volume 212
creator Deng, Ying
Wang, Bofu
Lu, Zhiming
description •Develop a new error correction system for decomposition based forecasting model.•Design a quasi-real-time decomposition strategy to obtain errors of each subseries.•Construct VMD-ARIMA to correct the predicted errors of each subseries.•Experiments validate the forecasting performance of the proposed model. Wind speed forecasting is crucial in exploiting wind energy and integrating power grid. This study presents a novel hybrid model, which includes decomposition module with real-time decomposition strategy, forecasting module and error correction module. In this model, the raw wind speed series is decomposed with empirical wavelet transform into several subseries. The Elman neural network is employed as predictor for each subseries. In addition, a new error correction system is proposed to capture the hidden information from wind speed and enhance the forecasting capability. In the error correction system, a quasi-real-time decomposition strategy is constructed to obtain errors of each subseries. The variational mode decomposition-autoregressive integrated moving average approach is built to predict the error series and complete the error correction task. Two experiments covering eight wind speed datasets and ten compared models are utilized to verify the effectiveness of the proposed model. The results show that: (a) the developed error correction system is an effective way to enhance forecasting performance of the decomposition based model; (b) the error series can be effectively repaired to increase the forecasting accuracy by the combination of the variational mode decomposition method and the autoregressive integrated moving average method; (c) the proposed model outperforms the compared conventional models in short-term wind speed forecasting.
doi_str_mv 10.1016/j.enconman.2020.112779
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2438988869</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0196890420303174</els_id><sourcerecordid>2438988869</sourcerecordid><originalsourceid>FETCH-LOGICAL-c340t-cc0b8cae00720ca20d88f989573cdc5dd6d80a142d35457f281908208e0d2cfb3</originalsourceid><addsrcrecordid>eNqFkMtOwzAQRS0EEuXxC8gS65Sx87J3VBUvqRIbWFuOPSmOmjjYKSh_j6vCmtVoRvfemTmE3DBYMmDVXbfEwfih18OSA09DxutanpAFE7XMOOf1KVkAk1UmJBTn5CLGDgDyEqoF6Vb0Y26Cs7T3Fne00REt9QO1etJ0DDgGbzBGN2xpnIKecDtTPViKIfhAjQ8BzeSSIc5xwp62afrtkiCOmJJSi0bHKfmvyFmrdxGvf-sleX98eFs_Z5vXp5f1apOZvIApMwYaYTQC1ByM5mCFaKWQZZ0ba0prKytAs4LbvCzKuuWCSRAcBILlpm3yS3J7zE2nf-4xTqrz-zCklYoXuZBCiEomVXVUmeBjDNiqMbheh1kxUAeuqlN_XNWBqzpyTcb7oxHTD18Og4rGJSVad0ChrHf_RfwAByOGBw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2438988869</pqid></control><display><type>article</type><title>A hybrid model based on data preprocessing strategy and error correction system for wind speed forecasting</title><source>Elsevier ScienceDirect Journals</source><creator>Deng, Ying ; Wang, Bofu ; Lu, Zhiming</creator><creatorcontrib>Deng, Ying ; Wang, Bofu ; Lu, Zhiming</creatorcontrib><description>•Develop a new error correction system for decomposition based forecasting model.•Design a quasi-real-time decomposition strategy to obtain errors of each subseries.•Construct VMD-ARIMA to correct the predicted errors of each subseries.•Experiments validate the forecasting performance of the proposed model. Wind speed forecasting is crucial in exploiting wind energy and integrating power grid. This study presents a novel hybrid model, which includes decomposition module with real-time decomposition strategy, forecasting module and error correction module. In this model, the raw wind speed series is decomposed with empirical wavelet transform into several subseries. The Elman neural network is employed as predictor for each subseries. In addition, a new error correction system is proposed to capture the hidden information from wind speed and enhance the forecasting capability. In the error correction system, a quasi-real-time decomposition strategy is constructed to obtain errors of each subseries. The variational mode decomposition-autoregressive integrated moving average approach is built to predict the error series and complete the error correction task. Two experiments covering eight wind speed datasets and ten compared models are utilized to verify the effectiveness of the proposed model. The results show that: (a) the developed error correction system is an effective way to enhance forecasting performance of the decomposition based model; (b) the error series can be effectively repaired to increase the forecasting accuracy by the combination of the variational mode decomposition method and the autoregressive integrated moving average method; (c) the proposed model outperforms the compared conventional models in short-term wind speed forecasting.</description><identifier>ISSN: 0196-8904</identifier><identifier>EISSN: 1879-2227</identifier><identifier>DOI: 10.1016/j.enconman.2020.112779</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Data preprocessing ; Decomposition ; Decomposition based model ; Electric power grids ; Empirical wavelet transform ; Error correction ; Error correction &amp; detection ; Error correction strategy ; Forecasting ; Hybrid model ; Mathematical models ; Modules ; Neural networks ; Real time ; Strategy ; Wavelet transforms ; Wind power ; Wind speed ; Wind speed prediction</subject><ispartof>Energy conversion and management, 2020-05, Vol.212, p.112779, Article 112779</ispartof><rights>2020 Elsevier Ltd</rights><rights>Copyright Elsevier Science Ltd. May 15, 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c340t-cc0b8cae00720ca20d88f989573cdc5dd6d80a142d35457f281908208e0d2cfb3</citedby><cites>FETCH-LOGICAL-c340t-cc0b8cae00720ca20d88f989573cdc5dd6d80a142d35457f281908208e0d2cfb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0196890420303174$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Deng, Ying</creatorcontrib><creatorcontrib>Wang, Bofu</creatorcontrib><creatorcontrib>Lu, Zhiming</creatorcontrib><title>A hybrid model based on data preprocessing strategy and error correction system for wind speed forecasting</title><title>Energy conversion and management</title><description>•Develop a new error correction system for decomposition based forecasting model.•Design a quasi-real-time decomposition strategy to obtain errors of each subseries.•Construct VMD-ARIMA to correct the predicted errors of each subseries.•Experiments validate the forecasting performance of the proposed model. Wind speed forecasting is crucial in exploiting wind energy and integrating power grid. This study presents a novel hybrid model, which includes decomposition module with real-time decomposition strategy, forecasting module and error correction module. In this model, the raw wind speed series is decomposed with empirical wavelet transform into several subseries. The Elman neural network is employed as predictor for each subseries. In addition, a new error correction system is proposed to capture the hidden information from wind speed and enhance the forecasting capability. In the error correction system, a quasi-real-time decomposition strategy is constructed to obtain errors of each subseries. The variational mode decomposition-autoregressive integrated moving average approach is built to predict the error series and complete the error correction task. Two experiments covering eight wind speed datasets and ten compared models are utilized to verify the effectiveness of the proposed model. The results show that: (a) the developed error correction system is an effective way to enhance forecasting performance of the decomposition based model; (b) the error series can be effectively repaired to increase the forecasting accuracy by the combination of the variational mode decomposition method and the autoregressive integrated moving average method; (c) the proposed model outperforms the compared conventional models in short-term wind speed forecasting.</description><subject>Data preprocessing</subject><subject>Decomposition</subject><subject>Decomposition based model</subject><subject>Electric power grids</subject><subject>Empirical wavelet transform</subject><subject>Error correction</subject><subject>Error correction &amp; detection</subject><subject>Error correction strategy</subject><subject>Forecasting</subject><subject>Hybrid model</subject><subject>Mathematical models</subject><subject>Modules</subject><subject>Neural networks</subject><subject>Real time</subject><subject>Strategy</subject><subject>Wavelet transforms</subject><subject>Wind power</subject><subject>Wind speed</subject><subject>Wind speed prediction</subject><issn>0196-8904</issn><issn>1879-2227</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqFkMtOwzAQRS0EEuXxC8gS65Sx87J3VBUvqRIbWFuOPSmOmjjYKSh_j6vCmtVoRvfemTmE3DBYMmDVXbfEwfih18OSA09DxutanpAFE7XMOOf1KVkAk1UmJBTn5CLGDgDyEqoF6Vb0Y26Cs7T3Fne00REt9QO1etJ0DDgGbzBGN2xpnIKecDtTPViKIfhAjQ8BzeSSIc5xwp62afrtkiCOmJJSi0bHKfmvyFmrdxGvf-sleX98eFs_Z5vXp5f1apOZvIApMwYaYTQC1ByM5mCFaKWQZZ0ba0prKytAs4LbvCzKuuWCSRAcBILlpm3yS3J7zE2nf-4xTqrz-zCklYoXuZBCiEomVXVUmeBjDNiqMbheh1kxUAeuqlN_XNWBqzpyTcb7oxHTD18Og4rGJSVad0ChrHf_RfwAByOGBw</recordid><startdate>20200515</startdate><enddate>20200515</enddate><creator>Deng, Ying</creator><creator>Wang, Bofu</creator><creator>Lu, Zhiming</creator><general>Elsevier Ltd</general><general>Elsevier Science Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>7TB</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope><scope>SOI</scope></search><sort><creationdate>20200515</creationdate><title>A hybrid model based on data preprocessing strategy and error correction system for wind speed forecasting</title><author>Deng, Ying ; Wang, Bofu ; Lu, Zhiming</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c340t-cc0b8cae00720ca20d88f989573cdc5dd6d80a142d35457f281908208e0d2cfb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Data preprocessing</topic><topic>Decomposition</topic><topic>Decomposition based model</topic><topic>Electric power grids</topic><topic>Empirical wavelet transform</topic><topic>Error correction</topic><topic>Error correction &amp; detection</topic><topic>Error correction strategy</topic><topic>Forecasting</topic><topic>Hybrid model</topic><topic>Mathematical models</topic><topic>Modules</topic><topic>Neural networks</topic><topic>Real time</topic><topic>Strategy</topic><topic>Wavelet transforms</topic><topic>Wind power</topic><topic>Wind speed</topic><topic>Wind speed prediction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Deng, Ying</creatorcontrib><creatorcontrib>Wang, Bofu</creatorcontrib><creatorcontrib>Lu, Zhiming</creatorcontrib><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Energy conversion and management</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Deng, Ying</au><au>Wang, Bofu</au><au>Lu, Zhiming</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A hybrid model based on data preprocessing strategy and error correction system for wind speed forecasting</atitle><jtitle>Energy conversion and management</jtitle><date>2020-05-15</date><risdate>2020</risdate><volume>212</volume><spage>112779</spage><pages>112779-</pages><artnum>112779</artnum><issn>0196-8904</issn><eissn>1879-2227</eissn><abstract>•Develop a new error correction system for decomposition based forecasting model.•Design a quasi-real-time decomposition strategy to obtain errors of each subseries.•Construct VMD-ARIMA to correct the predicted errors of each subseries.•Experiments validate the forecasting performance of the proposed model. Wind speed forecasting is crucial in exploiting wind energy and integrating power grid. This study presents a novel hybrid model, which includes decomposition module with real-time decomposition strategy, forecasting module and error correction module. In this model, the raw wind speed series is decomposed with empirical wavelet transform into several subseries. The Elman neural network is employed as predictor for each subseries. In addition, a new error correction system is proposed to capture the hidden information from wind speed and enhance the forecasting capability. In the error correction system, a quasi-real-time decomposition strategy is constructed to obtain errors of each subseries. The variational mode decomposition-autoregressive integrated moving average approach is built to predict the error series and complete the error correction task. Two experiments covering eight wind speed datasets and ten compared models are utilized to verify the effectiveness of the proposed model. The results show that: (a) the developed error correction system is an effective way to enhance forecasting performance of the decomposition based model; (b) the error series can be effectively repaired to increase the forecasting accuracy by the combination of the variational mode decomposition method and the autoregressive integrated moving average method; (c) the proposed model outperforms the compared conventional models in short-term wind speed forecasting.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.enconman.2020.112779</doi></addata></record>
fulltext fulltext
identifier ISSN: 0196-8904
ispartof Energy conversion and management, 2020-05, Vol.212, p.112779, Article 112779
issn 0196-8904
1879-2227
language eng
recordid cdi_proquest_journals_2438988869
source Elsevier ScienceDirect Journals
subjects Data preprocessing
Decomposition
Decomposition based model
Electric power grids
Empirical wavelet transform
Error correction
Error correction & detection
Error correction strategy
Forecasting
Hybrid model
Mathematical models
Modules
Neural networks
Real time
Strategy
Wavelet transforms
Wind power
Wind speed
Wind speed prediction
title A hybrid model based on data preprocessing strategy and error correction system for wind speed forecasting
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T23%3A08%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20hybrid%20model%20based%20on%20data%20preprocessing%20strategy%20and%20error%20correction%20system%20for%20wind%20speed%20forecasting&rft.jtitle=Energy%20conversion%20and%20management&rft.au=Deng,%20Ying&rft.date=2020-05-15&rft.volume=212&rft.spage=112779&rft.pages=112779-&rft.artnum=112779&rft.issn=0196-8904&rft.eissn=1879-2227&rft_id=info:doi/10.1016/j.enconman.2020.112779&rft_dat=%3Cproquest_cross%3E2438988869%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2438988869&rft_id=info:pmid/&rft_els_id=S0196890420303174&rfr_iscdi=true