Quantitative Rates of Convergence to Non-equilibrium Steady State for a Weakly Anharmonic Chain of Oscillators
We study a 1-dimensional chain of N weakly anharmonic classical oscillators coupled at its ends to heat baths at different temperatures. Each oscillator is subject to pinning potential and it also interacts with its nearest neighbors. In our set up both potentials are homogeneous and bounded (with N...
Gespeichert in:
Veröffentlicht in: | Journal of statistical physics 2020-10, Vol.181 (1), p.53-94 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 94 |
---|---|
container_issue | 1 |
container_start_page | 53 |
container_title | Journal of statistical physics |
container_volume | 181 |
creator | Menegaki, Angeliki |
description | We study a 1-dimensional chain of
N
weakly anharmonic classical oscillators coupled at its ends to heat baths at different temperatures. Each oscillator is subject to pinning potential and it also interacts with its nearest neighbors. In our set up both potentials are homogeneous and bounded (with
N
dependent bounds) perturbations of the harmonic ones. We show how a generalised version of Bakry–Emery theory can be adapted to this case of a hypoelliptic generator which is inspired by Baudoin (J Funct Anal 273(7):2275-2291, 2017). By that we prove exponential convergence to non-equilibrium steady state in Wasserstein–Kantorovich distance and in relative entropy with quantitative rates. We estimate the constants in the rate by solving a Lyapunov-type matrix equation and we obtain that the exponential rate, for the homogeneous chain, has order bigger than
N
-
3
. For the purely harmonic chain the order of the rate is in
[
N
-
3
,
N
-
1
]
. This shows that, in this set up, the spectral gap decays at most polynomially with
N
. |
doi_str_mv | 10.1007/s10955-020-02565-5 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2438988367</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A634144800</galeid><sourcerecordid>A634144800</sourcerecordid><originalsourceid>FETCH-LOGICAL-c402t-fe45258ec5333d7cf0831024e72851ac99530489145e021196f3f1ce3b28f2b03</originalsourceid><addsrcrecordid>eNp9kVtrGzEQhZfSQt20f6BPgj5vOrrtSo_G9AahIUlDHoUsjxylaymRtAH_-8rdQt_CMAwM55wZ-LruI4VzCjB-LhS0lD0waC0H2ctX3YrKkfV6oPx1twJgrBcjlW-7d6U8AIBWWq66eDXbWEO1NTwjubYVC0mebFJ8xrzH6JDURH6m2OPTHKawzWE-kJuKdndso-mJT5lYcof293Qk63hv8yHF4Mjm3oZ4CrssLkyTrSmX990bb6eCH_7Ns-7265dfm-_9xeW3H5v1Re8EsNp7FJJJhU5yznej86A4BSZwZEpS67SWHITSVEgERqkePPfUId8y5dkW-Fn3acl9zOlpxlLNQ5pzbCcNE1xppfgwNtX5otrbCU2IPtVsXasdHoJLEX1o-_XABRVCwSmWLQaXUykZvXnM4WDz0VAwJxBmAWEaCPMXhJHNxBdTaeK4x_z_lxdcfwAJXIpq</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2438988367</pqid></control><display><type>article</type><title>Quantitative Rates of Convergence to Non-equilibrium Steady State for a Weakly Anharmonic Chain of Oscillators</title><source>SpringerLink Journals (MCLS)</source><creator>Menegaki, Angeliki</creator><creatorcontrib>Menegaki, Angeliki</creatorcontrib><description>We study a 1-dimensional chain of
N
weakly anharmonic classical oscillators coupled at its ends to heat baths at different temperatures. Each oscillator is subject to pinning potential and it also interacts with its nearest neighbors. In our set up both potentials are homogeneous and bounded (with
N
dependent bounds) perturbations of the harmonic ones. We show how a generalised version of Bakry–Emery theory can be adapted to this case of a hypoelliptic generator which is inspired by Baudoin (J Funct Anal 273(7):2275-2291, 2017). By that we prove exponential convergence to non-equilibrium steady state in Wasserstein–Kantorovich distance and in relative entropy with quantitative rates. We estimate the constants in the rate by solving a Lyapunov-type matrix equation and we obtain that the exponential rate, for the homogeneous chain, has order bigger than
N
-
3
. For the purely harmonic chain the order of the rate is in
[
N
-
3
,
N
-
1
]
. This shows that, in this set up, the spectral gap decays at most polynomially with
N
.</description><identifier>ISSN: 0022-4715</identifier><identifier>EISSN: 1572-9613</identifier><identifier>DOI: 10.1007/s10955-020-02565-5</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Anharmonicity ; Chains ; Convergence ; Mathematical and Computational Physics ; Oscillators ; Physical Chemistry ; Physics ; Physics and Astronomy ; Quantum Physics ; Statistical Physics and Dynamical Systems ; Steady state ; Theoretical</subject><ispartof>Journal of statistical physics, 2020-10, Vol.181 (1), p.53-94</ispartof><rights>The Author(s) 2020</rights><rights>COPYRIGHT 2020 Springer</rights><rights>The Author(s) 2020. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c402t-fe45258ec5333d7cf0831024e72851ac99530489145e021196f3f1ce3b28f2b03</citedby><cites>FETCH-LOGICAL-c402t-fe45258ec5333d7cf0831024e72851ac99530489145e021196f3f1ce3b28f2b03</cites><orcidid>0000-0003-1192-3567</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10955-020-02565-5$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10955-020-02565-5$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Menegaki, Angeliki</creatorcontrib><title>Quantitative Rates of Convergence to Non-equilibrium Steady State for a Weakly Anharmonic Chain of Oscillators</title><title>Journal of statistical physics</title><addtitle>J Stat Phys</addtitle><description>We study a 1-dimensional chain of
N
weakly anharmonic classical oscillators coupled at its ends to heat baths at different temperatures. Each oscillator is subject to pinning potential and it also interacts with its nearest neighbors. In our set up both potentials are homogeneous and bounded (with
N
dependent bounds) perturbations of the harmonic ones. We show how a generalised version of Bakry–Emery theory can be adapted to this case of a hypoelliptic generator which is inspired by Baudoin (J Funct Anal 273(7):2275-2291, 2017). By that we prove exponential convergence to non-equilibrium steady state in Wasserstein–Kantorovich distance and in relative entropy with quantitative rates. We estimate the constants in the rate by solving a Lyapunov-type matrix equation and we obtain that the exponential rate, for the homogeneous chain, has order bigger than
N
-
3
. For the purely harmonic chain the order of the rate is in
[
N
-
3
,
N
-
1
]
. This shows that, in this set up, the spectral gap decays at most polynomially with
N
.</description><subject>Anharmonicity</subject><subject>Chains</subject><subject>Convergence</subject><subject>Mathematical and Computational Physics</subject><subject>Oscillators</subject><subject>Physical Chemistry</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum Physics</subject><subject>Statistical Physics and Dynamical Systems</subject><subject>Steady state</subject><subject>Theoretical</subject><issn>0022-4715</issn><issn>1572-9613</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp9kVtrGzEQhZfSQt20f6BPgj5vOrrtSo_G9AahIUlDHoUsjxylaymRtAH_-8rdQt_CMAwM55wZ-LruI4VzCjB-LhS0lD0waC0H2ctX3YrKkfV6oPx1twJgrBcjlW-7d6U8AIBWWq66eDXbWEO1NTwjubYVC0mebFJ8xrzH6JDURH6m2OPTHKawzWE-kJuKdndso-mJT5lYcof293Qk63hv8yHF4Mjm3oZ4CrssLkyTrSmX990bb6eCH_7Ns-7265dfm-_9xeW3H5v1Re8EsNp7FJJJhU5yznej86A4BSZwZEpS67SWHITSVEgERqkePPfUId8y5dkW-Fn3acl9zOlpxlLNQ5pzbCcNE1xppfgwNtX5otrbCU2IPtVsXasdHoJLEX1o-_XABRVCwSmWLQaXUykZvXnM4WDz0VAwJxBmAWEaCPMXhJHNxBdTaeK4x_z_lxdcfwAJXIpq</recordid><startdate>20201001</startdate><enddate>20201001</enddate><creator>Menegaki, Angeliki</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-1192-3567</orcidid></search><sort><creationdate>20201001</creationdate><title>Quantitative Rates of Convergence to Non-equilibrium Steady State for a Weakly Anharmonic Chain of Oscillators</title><author>Menegaki, Angeliki</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c402t-fe45258ec5333d7cf0831024e72851ac99530489145e021196f3f1ce3b28f2b03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Anharmonicity</topic><topic>Chains</topic><topic>Convergence</topic><topic>Mathematical and Computational Physics</topic><topic>Oscillators</topic><topic>Physical Chemistry</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum Physics</topic><topic>Statistical Physics and Dynamical Systems</topic><topic>Steady state</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Menegaki, Angeliki</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><jtitle>Journal of statistical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Menegaki, Angeliki</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantitative Rates of Convergence to Non-equilibrium Steady State for a Weakly Anharmonic Chain of Oscillators</atitle><jtitle>Journal of statistical physics</jtitle><stitle>J Stat Phys</stitle><date>2020-10-01</date><risdate>2020</risdate><volume>181</volume><issue>1</issue><spage>53</spage><epage>94</epage><pages>53-94</pages><issn>0022-4715</issn><eissn>1572-9613</eissn><abstract>We study a 1-dimensional chain of
N
weakly anharmonic classical oscillators coupled at its ends to heat baths at different temperatures. Each oscillator is subject to pinning potential and it also interacts with its nearest neighbors. In our set up both potentials are homogeneous and bounded (with
N
dependent bounds) perturbations of the harmonic ones. We show how a generalised version of Bakry–Emery theory can be adapted to this case of a hypoelliptic generator which is inspired by Baudoin (J Funct Anal 273(7):2275-2291, 2017). By that we prove exponential convergence to non-equilibrium steady state in Wasserstein–Kantorovich distance and in relative entropy with quantitative rates. We estimate the constants in the rate by solving a Lyapunov-type matrix equation and we obtain that the exponential rate, for the homogeneous chain, has order bigger than
N
-
3
. For the purely harmonic chain the order of the rate is in
[
N
-
3
,
N
-
1
]
. This shows that, in this set up, the spectral gap decays at most polynomially with
N
.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10955-020-02565-5</doi><tpages>42</tpages><orcidid>https://orcid.org/0000-0003-1192-3567</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-4715 |
ispartof | Journal of statistical physics, 2020-10, Vol.181 (1), p.53-94 |
issn | 0022-4715 1572-9613 |
language | eng |
recordid | cdi_proquest_journals_2438988367 |
source | SpringerLink Journals (MCLS) |
subjects | Anharmonicity Chains Convergence Mathematical and Computational Physics Oscillators Physical Chemistry Physics Physics and Astronomy Quantum Physics Statistical Physics and Dynamical Systems Steady state Theoretical |
title | Quantitative Rates of Convergence to Non-equilibrium Steady State for a Weakly Anharmonic Chain of Oscillators |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T02%3A27%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantitative%20Rates%20of%20Convergence%20to%20Non-equilibrium%20Steady%20State%20for%20a%20Weakly%20Anharmonic%20Chain%20of%20Oscillators&rft.jtitle=Journal%20of%20statistical%20physics&rft.au=Menegaki,%20Angeliki&rft.date=2020-10-01&rft.volume=181&rft.issue=1&rft.spage=53&rft.epage=94&rft.pages=53-94&rft.issn=0022-4715&rft.eissn=1572-9613&rft_id=info:doi/10.1007/s10955-020-02565-5&rft_dat=%3Cgale_proqu%3EA634144800%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2438988367&rft_id=info:pmid/&rft_galeid=A634144800&rfr_iscdi=true |