Stability of Poly(3-Hexylthiophene):Phenyl-C71-Butyric Acid Methyl Ester Solar Cells Modified by Pre-designed Supramolecular Nanostructures

The air stability of poly(3-hexylthiophene) (P3HT):phenyl-C71-butyric acid methyl ester (PC71BM) solar cells and their modified configurations was investigated by pure carbon nanotube (CNT), CNT- g -poly(3-dodecylthiophene) (PDDT) (stem)-P3HT (leaf), CNT- g -P3HT/P3HT butterfly, and core (CNT)-mantl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of electronic materials 2020-10, Vol.49 (10), p.5882-5894
Hauptverfasser: Xiao, Caiyuan, Zhang, Guiju, Agbolaghi, Samira
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5894
container_issue 10
container_start_page 5882
container_title Journal of electronic materials
container_volume 49
creator Xiao, Caiyuan
Zhang, Guiju
Agbolaghi, Samira
description The air stability of poly(3-hexylthiophene) (P3HT):phenyl-C71-butyric acid methyl ester (PC71BM) solar cells and their modified configurations was investigated by pure carbon nanotube (CNT), CNT- g -poly(3-dodecylthiophene) (PDDT) (stem)-P3HT (leaf), CNT- g -P3HT/P3HT butterfly, and core (CNT)-mantle (polyaniline (PANI))-shell (P3HT) nanostructures over a period of 1 month at 5-day intervals. Although the photovoltaic parameters decreased with aging time, the slopes of the decrease were less steep for well-modified systems. The slowest decreasing trends in short-circuit current density ( J sc  = 13.41 mA/cm 2 to 12.48 mA/cm 2 ), fill factor (FF = 67% to 62%), open-circuit voltage ( V oc  = 0.69 V to 0.64 V), power conversion efficiency (PCE = 6.20% to 4.95%), and charge transfer resistance ( R tr  = 370 Ω cm 2 to 688 Ω cm 2 ) plots versus aging were found for the core-mantle-shell modified photovoltaic devices. After 1 month of aging, P3HT:PC71BM:core-mantle-shell solar cells performed even better than 5-day-aged P3HT:PC71BM:stem-leaf photovoltaics (11.94 mA/cm 2 , 63%, 0.65 V and 4.89%). Orderly packed π -stacks of P3HT backbones in the respective crystals prevented the oxygen and water from penetrating the crystals, and thus the morphology was more stable. Pre-developed nanostructures including CNT- g -P3HT/P3HT butterfly and CNT- g -PANI/P3HT core-mantle-shell supramolecules not only provided higher phase separation in as-prepared devices, but also controlled and stabilized the morphology and constituent arrangement during air aging processes. Graphic Abstract
doi_str_mv 10.1007/s11664-020-08278-5
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2438806713</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2438806713</sourcerecordid><originalsourceid>FETCH-LOGICAL-c309t-8f724bfbda739f8f7b905532b73e83890316085c495c33ffaedfd50968515e6c3</originalsourceid><addsrcrecordid>eNp9kMtKxDAUhoMoOF5ewFXAjS6iSdO0qTsdxgt4GRgFd6FNT5xIbMYkBfsMvrTVEdy5Ovzw_f-BD6EDRk8YpeVpZKwockIzSqjMSknEBpowkXPCZPG8iSaUF4yIjItttBPjK6VMMMkm6HOR6sY6mwbsDZ57Nxxxcg0fg0tL61dL6OD4bD6ewZFpychFn4ZgNT7XtsV3kJaDw7OYIOCFd3XAU3Au4jvfWmOhxc2A5wFIC9G-dGNe9KtQv3kHuv-m7-vOxxR6nfoAcQ9tmdpF2P-9u-jpcvY4vSa3D1c30_NbojmtEpGmzPLGNG1d8sqMqamoEDxrSg6Sy4pyVlApdF4JzbkxNbSmFbQqpGACCs130eF6dxX8ew8xqVffh258qbKcS0mLkvGRytaUDj7GAEatgn2rw6AYVd_S1Vq6GqWrH-lKjCW-LsUR7l4g_E3_0_oCi5KGAg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2438806713</pqid></control><display><type>article</type><title>Stability of Poly(3-Hexylthiophene):Phenyl-C71-Butyric Acid Methyl Ester Solar Cells Modified by Pre-designed Supramolecular Nanostructures</title><source>SpringerLink Journals - AutoHoldings</source><creator>Xiao, Caiyuan ; Zhang, Guiju ; Agbolaghi, Samira</creator><creatorcontrib>Xiao, Caiyuan ; Zhang, Guiju ; Agbolaghi, Samira</creatorcontrib><description>The air stability of poly(3-hexylthiophene) (P3HT):phenyl-C71-butyric acid methyl ester (PC71BM) solar cells and their modified configurations was investigated by pure carbon nanotube (CNT), CNT- g -poly(3-dodecylthiophene) (PDDT) (stem)-P3HT (leaf), CNT- g -P3HT/P3HT butterfly, and core (CNT)-mantle (polyaniline (PANI))-shell (P3HT) nanostructures over a period of 1 month at 5-day intervals. Although the photovoltaic parameters decreased with aging time, the slopes of the decrease were less steep for well-modified systems. The slowest decreasing trends in short-circuit current density ( J sc  = 13.41 mA/cm 2 to 12.48 mA/cm 2 ), fill factor (FF = 67% to 62%), open-circuit voltage ( V oc  = 0.69 V to 0.64 V), power conversion efficiency (PCE = 6.20% to 4.95%), and charge transfer resistance ( R tr  = 370 Ω cm 2 to 688 Ω cm 2 ) plots versus aging were found for the core-mantle-shell modified photovoltaic devices. After 1 month of aging, P3HT:PC71BM:core-mantle-shell solar cells performed even better than 5-day-aged P3HT:PC71BM:stem-leaf photovoltaics (11.94 mA/cm 2 , 63%, 0.65 V and 4.89%). Orderly packed π -stacks of P3HT backbones in the respective crystals prevented the oxygen and water from penetrating the crystals, and thus the morphology was more stable. Pre-developed nanostructures including CNT- g -P3HT/P3HT butterfly and CNT- g -PANI/P3HT core-mantle-shell supramolecules not only provided higher phase separation in as-prepared devices, but also controlled and stabilized the morphology and constituent arrangement during air aging processes. Graphic Abstract</description><identifier>ISSN: 0361-5235</identifier><identifier>EISSN: 1543-186X</identifier><identifier>DOI: 10.1007/s11664-020-08278-5</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Aging ; Butyric acid ; Carbon nanotubes ; Characterization and Evaluation of Materials ; Charge transfer ; Chemistry and Materials Science ; Circuits ; Electronics and Microelectronics ; Energy conversion efficiency ; Instrumentation ; Materials Science ; Morphology ; Nanostructure ; Open circuit voltage ; Optical and Electronic Materials ; Phase separation ; Photovoltaic cells ; Polyanilines ; Short circuit currents ; Solar cells ; Solid State Physics ; Stability ; Stems</subject><ispartof>Journal of electronic materials, 2020-10, Vol.49 (10), p.5882-5894</ispartof><rights>The Minerals, Metals &amp; Materials Society 2020</rights><rights>The Minerals, Metals &amp; Materials Society 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c309t-8f724bfbda739f8f7b905532b73e83890316085c495c33ffaedfd50968515e6c3</cites><orcidid>0000-0003-0461-3317</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11664-020-08278-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11664-020-08278-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids></links><search><creatorcontrib>Xiao, Caiyuan</creatorcontrib><creatorcontrib>Zhang, Guiju</creatorcontrib><creatorcontrib>Agbolaghi, Samira</creatorcontrib><title>Stability of Poly(3-Hexylthiophene):Phenyl-C71-Butyric Acid Methyl Ester Solar Cells Modified by Pre-designed Supramolecular Nanostructures</title><title>Journal of electronic materials</title><addtitle>Journal of Elec Materi</addtitle><description>The air stability of poly(3-hexylthiophene) (P3HT):phenyl-C71-butyric acid methyl ester (PC71BM) solar cells and their modified configurations was investigated by pure carbon nanotube (CNT), CNT- g -poly(3-dodecylthiophene) (PDDT) (stem)-P3HT (leaf), CNT- g -P3HT/P3HT butterfly, and core (CNT)-mantle (polyaniline (PANI))-shell (P3HT) nanostructures over a period of 1 month at 5-day intervals. Although the photovoltaic parameters decreased with aging time, the slopes of the decrease were less steep for well-modified systems. The slowest decreasing trends in short-circuit current density ( J sc  = 13.41 mA/cm 2 to 12.48 mA/cm 2 ), fill factor (FF = 67% to 62%), open-circuit voltage ( V oc  = 0.69 V to 0.64 V), power conversion efficiency (PCE = 6.20% to 4.95%), and charge transfer resistance ( R tr  = 370 Ω cm 2 to 688 Ω cm 2 ) plots versus aging were found for the core-mantle-shell modified photovoltaic devices. After 1 month of aging, P3HT:PC71BM:core-mantle-shell solar cells performed even better than 5-day-aged P3HT:PC71BM:stem-leaf photovoltaics (11.94 mA/cm 2 , 63%, 0.65 V and 4.89%). Orderly packed π -stacks of P3HT backbones in the respective crystals prevented the oxygen and water from penetrating the crystals, and thus the morphology was more stable. Pre-developed nanostructures including CNT- g -P3HT/P3HT butterfly and CNT- g -PANI/P3HT core-mantle-shell supramolecules not only provided higher phase separation in as-prepared devices, but also controlled and stabilized the morphology and constituent arrangement during air aging processes. Graphic Abstract</description><subject>Aging</subject><subject>Butyric acid</subject><subject>Carbon nanotubes</subject><subject>Characterization and Evaluation of Materials</subject><subject>Charge transfer</subject><subject>Chemistry and Materials Science</subject><subject>Circuits</subject><subject>Electronics and Microelectronics</subject><subject>Energy conversion efficiency</subject><subject>Instrumentation</subject><subject>Materials Science</subject><subject>Morphology</subject><subject>Nanostructure</subject><subject>Open circuit voltage</subject><subject>Optical and Electronic Materials</subject><subject>Phase separation</subject><subject>Photovoltaic cells</subject><subject>Polyanilines</subject><subject>Short circuit currents</subject><subject>Solar cells</subject><subject>Solid State Physics</subject><subject>Stability</subject><subject>Stems</subject><issn>0361-5235</issn><issn>1543-186X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kMtKxDAUhoMoOF5ewFXAjS6iSdO0qTsdxgt4GRgFd6FNT5xIbMYkBfsMvrTVEdy5Ovzw_f-BD6EDRk8YpeVpZKwockIzSqjMSknEBpowkXPCZPG8iSaUF4yIjItttBPjK6VMMMkm6HOR6sY6mwbsDZ57Nxxxcg0fg0tL61dL6OD4bD6ewZFpychFn4ZgNT7XtsV3kJaDw7OYIOCFd3XAU3Au4jvfWmOhxc2A5wFIC9G-dGNe9KtQv3kHuv-m7-vOxxR6nfoAcQ9tmdpF2P-9u-jpcvY4vSa3D1c30_NbojmtEpGmzPLGNG1d8sqMqamoEDxrSg6Sy4pyVlApdF4JzbkxNbSmFbQqpGACCs130eF6dxX8ew8xqVffh258qbKcS0mLkvGRytaUDj7GAEatgn2rw6AYVd_S1Vq6GqWrH-lKjCW-LsUR7l4g_E3_0_oCi5KGAg</recordid><startdate>20201001</startdate><enddate>20201001</enddate><creator>Xiao, Caiyuan</creator><creator>Zhang, Guiju</creator><creator>Agbolaghi, Samira</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0X</scope><orcidid>https://orcid.org/0000-0003-0461-3317</orcidid></search><sort><creationdate>20201001</creationdate><title>Stability of Poly(3-Hexylthiophene):Phenyl-C71-Butyric Acid Methyl Ester Solar Cells Modified by Pre-designed Supramolecular Nanostructures</title><author>Xiao, Caiyuan ; Zhang, Guiju ; Agbolaghi, Samira</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c309t-8f724bfbda739f8f7b905532b73e83890316085c495c33ffaedfd50968515e6c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Aging</topic><topic>Butyric acid</topic><topic>Carbon nanotubes</topic><topic>Characterization and Evaluation of Materials</topic><topic>Charge transfer</topic><topic>Chemistry and Materials Science</topic><topic>Circuits</topic><topic>Electronics and Microelectronics</topic><topic>Energy conversion efficiency</topic><topic>Instrumentation</topic><topic>Materials Science</topic><topic>Morphology</topic><topic>Nanostructure</topic><topic>Open circuit voltage</topic><topic>Optical and Electronic Materials</topic><topic>Phase separation</topic><topic>Photovoltaic cells</topic><topic>Polyanilines</topic><topic>Short circuit currents</topic><topic>Solar cells</topic><topic>Solid State Physics</topic><topic>Stability</topic><topic>Stems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xiao, Caiyuan</creatorcontrib><creatorcontrib>Zhang, Guiju</creatorcontrib><creatorcontrib>Agbolaghi, Samira</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>Journal of electronic materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xiao, Caiyuan</au><au>Zhang, Guiju</au><au>Agbolaghi, Samira</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stability of Poly(3-Hexylthiophene):Phenyl-C71-Butyric Acid Methyl Ester Solar Cells Modified by Pre-designed Supramolecular Nanostructures</atitle><jtitle>Journal of electronic materials</jtitle><stitle>Journal of Elec Materi</stitle><date>2020-10-01</date><risdate>2020</risdate><volume>49</volume><issue>10</issue><spage>5882</spage><epage>5894</epage><pages>5882-5894</pages><issn>0361-5235</issn><eissn>1543-186X</eissn><abstract>The air stability of poly(3-hexylthiophene) (P3HT):phenyl-C71-butyric acid methyl ester (PC71BM) solar cells and their modified configurations was investigated by pure carbon nanotube (CNT), CNT- g -poly(3-dodecylthiophene) (PDDT) (stem)-P3HT (leaf), CNT- g -P3HT/P3HT butterfly, and core (CNT)-mantle (polyaniline (PANI))-shell (P3HT) nanostructures over a period of 1 month at 5-day intervals. Although the photovoltaic parameters decreased with aging time, the slopes of the decrease were less steep for well-modified systems. The slowest decreasing trends in short-circuit current density ( J sc  = 13.41 mA/cm 2 to 12.48 mA/cm 2 ), fill factor (FF = 67% to 62%), open-circuit voltage ( V oc  = 0.69 V to 0.64 V), power conversion efficiency (PCE = 6.20% to 4.95%), and charge transfer resistance ( R tr  = 370 Ω cm 2 to 688 Ω cm 2 ) plots versus aging were found for the core-mantle-shell modified photovoltaic devices. After 1 month of aging, P3HT:PC71BM:core-mantle-shell solar cells performed even better than 5-day-aged P3HT:PC71BM:stem-leaf photovoltaics (11.94 mA/cm 2 , 63%, 0.65 V and 4.89%). Orderly packed π -stacks of P3HT backbones in the respective crystals prevented the oxygen and water from penetrating the crystals, and thus the morphology was more stable. Pre-developed nanostructures including CNT- g -P3HT/P3HT butterfly and CNT- g -PANI/P3HT core-mantle-shell supramolecules not only provided higher phase separation in as-prepared devices, but also controlled and stabilized the morphology and constituent arrangement during air aging processes. Graphic Abstract</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11664-020-08278-5</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-0461-3317</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0361-5235
ispartof Journal of electronic materials, 2020-10, Vol.49 (10), p.5882-5894
issn 0361-5235
1543-186X
language eng
recordid cdi_proquest_journals_2438806713
source SpringerLink Journals - AutoHoldings
subjects Aging
Butyric acid
Carbon nanotubes
Characterization and Evaluation of Materials
Charge transfer
Chemistry and Materials Science
Circuits
Electronics and Microelectronics
Energy conversion efficiency
Instrumentation
Materials Science
Morphology
Nanostructure
Open circuit voltage
Optical and Electronic Materials
Phase separation
Photovoltaic cells
Polyanilines
Short circuit currents
Solar cells
Solid State Physics
Stability
Stems
title Stability of Poly(3-Hexylthiophene):Phenyl-C71-Butyric Acid Methyl Ester Solar Cells Modified by Pre-designed Supramolecular Nanostructures
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T13%3A07%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stability%20of%20Poly(3-Hexylthiophene):Phenyl-C71-Butyric%20Acid%20Methyl%20Ester%20Solar%20Cells%20Modified%20by%20Pre-designed%20Supramolecular%20Nanostructures&rft.jtitle=Journal%20of%20electronic%20materials&rft.au=Xiao,%20Caiyuan&rft.date=2020-10-01&rft.volume=49&rft.issue=10&rft.spage=5882&rft.epage=5894&rft.pages=5882-5894&rft.issn=0361-5235&rft.eissn=1543-186X&rft_id=info:doi/10.1007/s11664-020-08278-5&rft_dat=%3Cproquest_cross%3E2438806713%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2438806713&rft_id=info:pmid/&rfr_iscdi=true