On an Optimal Minor-Actinide Transmutation Regime in a Molten-Salt Reactor

The basic regularities in the transmutation Np, Am, and Cm in a molten-salt burner reactor are examined on the basis of the results of neutronic calculations of an idealized infinite homogeneous medium consisting of metal halogenides with low atomic mass. It is shown that an optimal equilibrium regi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Atomic energy (New York, N.Y.) N.Y.), 2020-07, Vol.128 (3), p.143-150
Hauptverfasser: Belonogov, M. N., Volkov, I. A., Modestov, D. G., Rykovanov, G. N., Simonenko, V. A., Khmel’nitskii, D. V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 150
container_issue 3
container_start_page 143
container_title Atomic energy (New York, N.Y.)
container_volume 128
creator Belonogov, M. N.
Volkov, I. A.
Modestov, D. G.
Rykovanov, G. N.
Simonenko, V. A.
Khmel’nitskii, D. V.
description The basic regularities in the transmutation Np, Am, and Cm in a molten-salt burner reactor are examined on the basis of the results of neutronic calculations of an idealized infinite homogeneous medium consisting of metal halogenides with low atomic mass. It is shown that an optimal equilibrium regime for the transmutation of Np, Am, and Cm in a molten-salt burner reactor could exist. In this regime, makeup fuel consists of the actinides of the spent nuclear fuel of power reactors; only fission products are extracted. The optimal regime obtains at a definite concentration of actinide fluorides in the fuel composition. The concentration is determined by the size of the reactor and depends relatively weakly on the composition of the spent nuclear fuel, type of salt solvent, and frequency of fuel reprocessing during a run.
doi_str_mv 10.1007/s10512-020-00665-9
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2438802525</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A647371231</galeid><sourcerecordid>A647371231</sourcerecordid><originalsourceid>FETCH-LOGICAL-c392t-ec9e595a30d4a07572ff4e7efef2dd9087aa38a5a7b4a24c2a1f49c1013f97aa3</originalsourceid><addsrcrecordid>eNqNkU1rFTEUhgdRsFb_gKsBVyKpJ1-TyfJy8aPScqGt65BmTi4pc5NrkqH6700dUboRySKHk-dJwnm77jWFMwqg3hcKkjICDAjAMEiin3QnVCpORgbyaath4EQwOT7vXpRyBwB60ONJ92UXexv73bGGg537yxBTJhtXQwwT9jfZxnJYqq0hxf4K9-GAfWhGf5nmipFc27m2vnU15ZfdM2_ngq9-76fd148fbrafycXu0_l2c0Ec16wSdBqllpbDJCwoqZj3AhV69GyaNIzKWj5aadWtsEw4ZqkX2lGg3OuHs9PuzXrvMadvC5Zq7tKSY3vSMMHHEZhkslFnK7W3M5oQfarZurYmPASXIvrQ-ptBKK4o47QJbx8Jjan4ve7tUoo5v756zLKVdTmVktGbY27zyz8MBfMQiFkDMS0Q8ysQo5v0bpXu8Tb54gJGh3_ElogcqG5Sq0A0evx_ehvWiLZpibWpfFVLw-Me898B_eN7PwFnbayF</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2438802525</pqid></control><display><type>article</type><title>On an Optimal Minor-Actinide Transmutation Regime in a Molten-Salt Reactor</title><source>SpringerNature Journals</source><source>Web of Science - Science Citation Index Expanded - 2020&lt;img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /&gt;</source><creator>Belonogov, M. N. ; Volkov, I. A. ; Modestov, D. G. ; Rykovanov, G. N. ; Simonenko, V. A. ; Khmel’nitskii, D. V.</creator><creatorcontrib>Belonogov, M. N. ; Volkov, I. A. ; Modestov, D. G. ; Rykovanov, G. N. ; Simonenko, V. A. ; Khmel’nitskii, D. V.</creatorcontrib><description>The basic regularities in the transmutation Np, Am, and Cm in a molten-salt burner reactor are examined on the basis of the results of neutronic calculations of an idealized infinite homogeneous medium consisting of metal halogenides with low atomic mass. It is shown that an optimal equilibrium regime for the transmutation of Np, Am, and Cm in a molten-salt burner reactor could exist. In this regime, makeup fuel consists of the actinides of the spent nuclear fuel of power reactors; only fission products are extracted. The optimal regime obtains at a definite concentration of actinide fluorides in the fuel composition. The concentration is determined by the size of the reactor and depends relatively weakly on the composition of the spent nuclear fuel, type of salt solvent, and frequency of fuel reprocessing during a run.</description><identifier>ISSN: 1063-4258</identifier><identifier>EISSN: 1573-8205</identifier><identifier>DOI: 10.1007/s10512-020-00665-9</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Actinides ; Atomic properties ; Energy industry ; Fission products ; Fluorides ; Fuel reprocessing ; Hadrons ; Heavy Ions ; Molten salt nuclear reactors ; Neptunium ; Nuclear Chemistry ; Nuclear Energy ; Nuclear fuels ; Nuclear industry ; Nuclear Physics ; Nuclear power plants ; Nuclear reactors ; Nuclear Science &amp; Technology ; Physics ; Physics and Astronomy ; Power reactors ; Radioactive wastes ; Reactors ; Reprocessing ; Salts ; Science &amp; Technology ; Spent nuclear fuels ; Spent reactor fuels ; Technology ; Transmutation</subject><ispartof>Atomic energy (New York, N.Y.), 2020-07, Vol.128 (3), p.143-150</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020</rights><rights>COPYRIGHT 2020 Springer</rights><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>1</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000561951200004</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c392t-ec9e595a30d4a07572ff4e7efef2dd9087aa38a5a7b4a24c2a1f49c1013f97aa3</citedby><cites>FETCH-LOGICAL-c392t-ec9e595a30d4a07572ff4e7efef2dd9087aa38a5a7b4a24c2a1f49c1013f97aa3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10512-020-00665-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10512-020-00665-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>315,782,786,27931,27932,28255,41495,42564,51326</link.rule.ids></links><search><creatorcontrib>Belonogov, M. N.</creatorcontrib><creatorcontrib>Volkov, I. A.</creatorcontrib><creatorcontrib>Modestov, D. G.</creatorcontrib><creatorcontrib>Rykovanov, G. N.</creatorcontrib><creatorcontrib>Simonenko, V. A.</creatorcontrib><creatorcontrib>Khmel’nitskii, D. V.</creatorcontrib><title>On an Optimal Minor-Actinide Transmutation Regime in a Molten-Salt Reactor</title><title>Atomic energy (New York, N.Y.)</title><addtitle>At Energy</addtitle><addtitle>ATOM ENERGY</addtitle><description>The basic regularities in the transmutation Np, Am, and Cm in a molten-salt burner reactor are examined on the basis of the results of neutronic calculations of an idealized infinite homogeneous medium consisting of metal halogenides with low atomic mass. It is shown that an optimal equilibrium regime for the transmutation of Np, Am, and Cm in a molten-salt burner reactor could exist. In this regime, makeup fuel consists of the actinides of the spent nuclear fuel of power reactors; only fission products are extracted. The optimal regime obtains at a definite concentration of actinide fluorides in the fuel composition. The concentration is determined by the size of the reactor and depends relatively weakly on the composition of the spent nuclear fuel, type of salt solvent, and frequency of fuel reprocessing during a run.</description><subject>Actinides</subject><subject>Atomic properties</subject><subject>Energy industry</subject><subject>Fission products</subject><subject>Fluorides</subject><subject>Fuel reprocessing</subject><subject>Hadrons</subject><subject>Heavy Ions</subject><subject>Molten salt nuclear reactors</subject><subject>Neptunium</subject><subject>Nuclear Chemistry</subject><subject>Nuclear Energy</subject><subject>Nuclear fuels</subject><subject>Nuclear industry</subject><subject>Nuclear Physics</subject><subject>Nuclear power plants</subject><subject>Nuclear reactors</subject><subject>Nuclear Science &amp; Technology</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Power reactors</subject><subject>Radioactive wastes</subject><subject>Reactors</subject><subject>Reprocessing</subject><subject>Salts</subject><subject>Science &amp; Technology</subject><subject>Spent nuclear fuels</subject><subject>Spent reactor fuels</subject><subject>Technology</subject><subject>Transmutation</subject><issn>1063-4258</issn><issn>1573-8205</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AOWDO</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqNkU1rFTEUhgdRsFb_gKsBVyKpJ1-TyfJy8aPScqGt65BmTi4pc5NrkqH6700dUboRySKHk-dJwnm77jWFMwqg3hcKkjICDAjAMEiin3QnVCpORgbyaath4EQwOT7vXpRyBwB60ONJ92UXexv73bGGg537yxBTJhtXQwwT9jfZxnJYqq0hxf4K9-GAfWhGf5nmipFc27m2vnU15ZfdM2_ngq9-76fd148fbrafycXu0_l2c0Ec16wSdBqllpbDJCwoqZj3AhV69GyaNIzKWj5aadWtsEw4ZqkX2lGg3OuHs9PuzXrvMadvC5Zq7tKSY3vSMMHHEZhkslFnK7W3M5oQfarZurYmPASXIvrQ-ptBKK4o47QJbx8Jjan4ve7tUoo5v756zLKVdTmVktGbY27zyz8MBfMQiFkDMS0Q8ysQo5v0bpXu8Tb54gJGh3_ElogcqG5Sq0A0evx_ehvWiLZpibWpfFVLw-Me898B_eN7PwFnbayF</recordid><startdate>20200701</startdate><enddate>20200701</enddate><creator>Belonogov, M. N.</creator><creator>Volkov, I. A.</creator><creator>Modestov, D. G.</creator><creator>Rykovanov, G. N.</creator><creator>Simonenko, V. A.</creator><creator>Khmel’nitskii, D. V.</creator><general>Springer US</general><general>Springer Nature</general><general>Springer</general><general>Springer Nature B.V</general><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7SP</scope><scope>7ST</scope><scope>7TB</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K60</scope><scope>K6~</scope><scope>KR7</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>M0C</scope><scope>M2P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYYUZ</scope><scope>Q9U</scope><scope>SOI</scope></search><sort><creationdate>20200701</creationdate><title>On an Optimal Minor-Actinide Transmutation Regime in a Molten-Salt Reactor</title><author>Belonogov, M. N. ; Volkov, I. A. ; Modestov, D. G. ; Rykovanov, G. N. ; Simonenko, V. A. ; Khmel’nitskii, D. V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c392t-ec9e595a30d4a07572ff4e7efef2dd9087aa38a5a7b4a24c2a1f49c1013f97aa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Actinides</topic><topic>Atomic properties</topic><topic>Energy industry</topic><topic>Fission products</topic><topic>Fluorides</topic><topic>Fuel reprocessing</topic><topic>Hadrons</topic><topic>Heavy Ions</topic><topic>Molten salt nuclear reactors</topic><topic>Neptunium</topic><topic>Nuclear Chemistry</topic><topic>Nuclear Energy</topic><topic>Nuclear fuels</topic><topic>Nuclear industry</topic><topic>Nuclear Physics</topic><topic>Nuclear power plants</topic><topic>Nuclear reactors</topic><topic>Nuclear Science &amp; Technology</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Power reactors</topic><topic>Radioactive wastes</topic><topic>Reactors</topic><topic>Reprocessing</topic><topic>Salts</topic><topic>Science &amp; Technology</topic><topic>Spent nuclear fuels</topic><topic>Spent reactor fuels</topic><topic>Technology</topic><topic>Transmutation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Belonogov, M. N.</creatorcontrib><creatorcontrib>Volkov, I. A.</creatorcontrib><creatorcontrib>Modestov, D. G.</creatorcontrib><creatorcontrib>Rykovanov, G. N.</creatorcontrib><creatorcontrib>Simonenko, V. A.</creatorcontrib><creatorcontrib>Khmel’nitskii, D. V.</creatorcontrib><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Environment Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Access via ABI/INFORM (ProQuest)</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Civil Engineering Abstracts</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ABI/INFORM Global</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ABI/INFORM Collection China</collection><collection>ProQuest Central Basic</collection><collection>Environment Abstracts</collection><jtitle>Atomic energy (New York, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Belonogov, M. N.</au><au>Volkov, I. A.</au><au>Modestov, D. G.</au><au>Rykovanov, G. N.</au><au>Simonenko, V. A.</au><au>Khmel’nitskii, D. V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On an Optimal Minor-Actinide Transmutation Regime in a Molten-Salt Reactor</atitle><jtitle>Atomic energy (New York, N.Y.)</jtitle><stitle>At Energy</stitle><stitle>ATOM ENERGY</stitle><date>2020-07-01</date><risdate>2020</risdate><volume>128</volume><issue>3</issue><spage>143</spage><epage>150</epage><pages>143-150</pages><issn>1063-4258</issn><eissn>1573-8205</eissn><abstract>The basic regularities in the transmutation Np, Am, and Cm in a molten-salt burner reactor are examined on the basis of the results of neutronic calculations of an idealized infinite homogeneous medium consisting of metal halogenides with low atomic mass. It is shown that an optimal equilibrium regime for the transmutation of Np, Am, and Cm in a molten-salt burner reactor could exist. In this regime, makeup fuel consists of the actinides of the spent nuclear fuel of power reactors; only fission products are extracted. The optimal regime obtains at a definite concentration of actinide fluorides in the fuel composition. The concentration is determined by the size of the reactor and depends relatively weakly on the composition of the spent nuclear fuel, type of salt solvent, and frequency of fuel reprocessing during a run.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10512-020-00665-9</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1063-4258
ispartof Atomic energy (New York, N.Y.), 2020-07, Vol.128 (3), p.143-150
issn 1063-4258
1573-8205
language eng
recordid cdi_proquest_journals_2438802525
source SpringerNature Journals; Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />
subjects Actinides
Atomic properties
Energy industry
Fission products
Fluorides
Fuel reprocessing
Hadrons
Heavy Ions
Molten salt nuclear reactors
Neptunium
Nuclear Chemistry
Nuclear Energy
Nuclear fuels
Nuclear industry
Nuclear Physics
Nuclear power plants
Nuclear reactors
Nuclear Science & Technology
Physics
Physics and Astronomy
Power reactors
Radioactive wastes
Reactors
Reprocessing
Salts
Science & Technology
Spent nuclear fuels
Spent reactor fuels
Technology
Transmutation
title On an Optimal Minor-Actinide Transmutation Regime in a Molten-Salt Reactor
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-04T06%3A17%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20an%20Optimal%20Minor-Actinide%20Transmutation%20Regime%20in%20a%20Molten-Salt%20Reactor&rft.jtitle=Atomic%20energy%20(New%20York,%20N.Y.)&rft.au=Belonogov,%20M.%20N.&rft.date=2020-07-01&rft.volume=128&rft.issue=3&rft.spage=143&rft.epage=150&rft.pages=143-150&rft.issn=1063-4258&rft.eissn=1573-8205&rft_id=info:doi/10.1007/s10512-020-00665-9&rft_dat=%3Cgale_proqu%3EA647371231%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2438802525&rft_id=info:pmid/&rft_galeid=A647371231&rfr_iscdi=true