A hybrid data mining approach for anomaly detection and evaluation in residential buildings energy data

With the development in information technologies, today's building energy consumption can be well monitored by the building energy management systems. However, in most real applications there is no clear definition of abnormal building energy consumption. To overcome this limitation, this work...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Energy and buildings 2020-05, Vol.215, p.109864, Article 109864
Hauptverfasser: Xu, Chengliang, Chen, Huanxin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 109864
container_title Energy and buildings
container_volume 215
creator Xu, Chengliang
Chen, Huanxin
description With the development in information technologies, today's building energy consumption can be well monitored by the building energy management systems. However, in most real applications there is no clear definition of abnormal building energy consumption. To overcome this limitation, this work proposes a novel deep learning based unsupervised anomaly detection framework that includes recurrent neural networks and quantile regression. Moreover, this framework is able to produce a prediction interval to detect and evaluate abnormal building energy consumption. The framework has been applied to analyze the energy data collected from three different residential houses, and anomaly detection results are evaluated by the quantile regression range. The research results can provide promising solutions for building managers to detect abnormal energy performance, and is also valuable to assess the level of anomalies and spot opportunities in energy conservation.
doi_str_mv 10.1016/j.enbuild.2020.109864
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2438725592</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0378778819333158</els_id><sourcerecordid>2438725592</sourcerecordid><originalsourceid>FETCH-LOGICAL-c337t-2fa93edc2d394097c6e0a167af226da693f3ec972f8bb2e7911982dc94d823133</originalsourceid><addsrcrecordid>eNqFkMtqwzAQRUVpoWnaTygIunaqh21JqxJCXxDopl0LWRonMo6cSk4gf1_lse9qmMudOzMHoUdKZpTQ-rmbQWh2vnczRthRU7Iur9CESsGKmgp5jSaEC1kIIeUtukupI4TUlaATtJrj9aGJ3mFnRoM3Pviwwma7jYOxa9wOEZswbEx_wA5GsKMfQlYchr3pd-bU-oAjJO8gjN70-HRKTkkYAsTV4ZR8j25a0yd4uNQp-nl7_V58FMuv98_FfFlYzsVYsNYoDs4yx1VJlLA1EENrYVrGamdqxVsOVgnWyqZhIBSlSjJnVekk45TzKXo65-YHfneQRt0NuxjySs1KnoFUlWLZVZ1dNg4pRWj1NvqNiQdNiT4y1Z2-MNVHpvrMNM-9nOcgv7D3EHWyHoIF52Nmo93g_0n4AzWBg1c</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2438725592</pqid></control><display><type>article</type><title>A hybrid data mining approach for anomaly detection and evaluation in residential buildings energy data</title><source>Access via ScienceDirect (Elsevier)</source><creator>Xu, Chengliang ; Chen, Huanxin</creator><creatorcontrib>Xu, Chengliang ; Chen, Huanxin</creatorcontrib><description>With the development in information technologies, today's building energy consumption can be well monitored by the building energy management systems. However, in most real applications there is no clear definition of abnormal building energy consumption. To overcome this limitation, this work proposes a novel deep learning based unsupervised anomaly detection framework that includes recurrent neural networks and quantile regression. Moreover, this framework is able to produce a prediction interval to detect and evaluate abnormal building energy consumption. The framework has been applied to analyze the energy data collected from three different residential houses, and anomaly detection results are evaluated by the quantile regression range. The research results can provide promising solutions for building managers to detect abnormal energy performance, and is also valuable to assess the level of anomalies and spot opportunities in energy conservation.</description><identifier>ISSN: 0378-7788</identifier><identifier>EISSN: 1872-6178</identifier><identifier>DOI: 10.1016/j.enbuild.2020.109864</identifier><language>eng</language><publisher>Lausanne: Elsevier B.V</publisher><subject>Anomalies ; Anomaly detection ; Building energy management ; Buildings ; Data mining ; Deep learning ; Energy conservation ; Energy consumption ; Energy management ; Energy management systems ; Houses ; Housing ; Machine learning ; Neural networks ; Quantile regression ; Recurrent neural networks ; Regression analysis ; Residential areas ; Residential buildings ; Residential energy</subject><ispartof>Energy and buildings, 2020-05, Vol.215, p.109864, Article 109864</ispartof><rights>2020</rights><rights>Copyright Elsevier BV May 15, 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c337t-2fa93edc2d394097c6e0a167af226da693f3ec972f8bb2e7911982dc94d823133</citedby><cites>FETCH-LOGICAL-c337t-2fa93edc2d394097c6e0a167af226da693f3ec972f8bb2e7911982dc94d823133</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.enbuild.2020.109864$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Xu, Chengliang</creatorcontrib><creatorcontrib>Chen, Huanxin</creatorcontrib><title>A hybrid data mining approach for anomaly detection and evaluation in residential buildings energy data</title><title>Energy and buildings</title><description>With the development in information technologies, today's building energy consumption can be well monitored by the building energy management systems. However, in most real applications there is no clear definition of abnormal building energy consumption. To overcome this limitation, this work proposes a novel deep learning based unsupervised anomaly detection framework that includes recurrent neural networks and quantile regression. Moreover, this framework is able to produce a prediction interval to detect and evaluate abnormal building energy consumption. The framework has been applied to analyze the energy data collected from three different residential houses, and anomaly detection results are evaluated by the quantile regression range. The research results can provide promising solutions for building managers to detect abnormal energy performance, and is also valuable to assess the level of anomalies and spot opportunities in energy conservation.</description><subject>Anomalies</subject><subject>Anomaly detection</subject><subject>Building energy management</subject><subject>Buildings</subject><subject>Data mining</subject><subject>Deep learning</subject><subject>Energy conservation</subject><subject>Energy consumption</subject><subject>Energy management</subject><subject>Energy management systems</subject><subject>Houses</subject><subject>Housing</subject><subject>Machine learning</subject><subject>Neural networks</subject><subject>Quantile regression</subject><subject>Recurrent neural networks</subject><subject>Regression analysis</subject><subject>Residential areas</subject><subject>Residential buildings</subject><subject>Residential energy</subject><issn>0378-7788</issn><issn>1872-6178</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqFkMtqwzAQRUVpoWnaTygIunaqh21JqxJCXxDopl0LWRonMo6cSk4gf1_lse9qmMudOzMHoUdKZpTQ-rmbQWh2vnczRthRU7Iur9CESsGKmgp5jSaEC1kIIeUtukupI4TUlaATtJrj9aGJ3mFnRoM3Pviwwma7jYOxa9wOEZswbEx_wA5GsKMfQlYchr3pd-bU-oAjJO8gjN70-HRKTkkYAsTV4ZR8j25a0yd4uNQp-nl7_V58FMuv98_FfFlYzsVYsNYoDs4yx1VJlLA1EENrYVrGamdqxVsOVgnWyqZhIBSlSjJnVekk45TzKXo65-YHfneQRt0NuxjySs1KnoFUlWLZVZ1dNg4pRWj1NvqNiQdNiT4y1Z2-MNVHpvrMNM-9nOcgv7D3EHWyHoIF52Nmo93g_0n4AzWBg1c</recordid><startdate>20200515</startdate><enddate>20200515</enddate><creator>Xu, Chengliang</creator><creator>Chen, Huanxin</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>KR7</scope><scope>SOI</scope></search><sort><creationdate>20200515</creationdate><title>A hybrid data mining approach for anomaly detection and evaluation in residential buildings energy data</title><author>Xu, Chengliang ; Chen, Huanxin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c337t-2fa93edc2d394097c6e0a167af226da693f3ec972f8bb2e7911982dc94d823133</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Anomalies</topic><topic>Anomaly detection</topic><topic>Building energy management</topic><topic>Buildings</topic><topic>Data mining</topic><topic>Deep learning</topic><topic>Energy conservation</topic><topic>Energy consumption</topic><topic>Energy management</topic><topic>Energy management systems</topic><topic>Houses</topic><topic>Housing</topic><topic>Machine learning</topic><topic>Neural networks</topic><topic>Quantile regression</topic><topic>Recurrent neural networks</topic><topic>Regression analysis</topic><topic>Residential areas</topic><topic>Residential buildings</topic><topic>Residential energy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xu, Chengliang</creatorcontrib><creatorcontrib>Chen, Huanxin</creatorcontrib><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Environment Abstracts</collection><jtitle>Energy and buildings</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xu, Chengliang</au><au>Chen, Huanxin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A hybrid data mining approach for anomaly detection and evaluation in residential buildings energy data</atitle><jtitle>Energy and buildings</jtitle><date>2020-05-15</date><risdate>2020</risdate><volume>215</volume><spage>109864</spage><pages>109864-</pages><artnum>109864</artnum><issn>0378-7788</issn><eissn>1872-6178</eissn><abstract>With the development in information technologies, today's building energy consumption can be well monitored by the building energy management systems. However, in most real applications there is no clear definition of abnormal building energy consumption. To overcome this limitation, this work proposes a novel deep learning based unsupervised anomaly detection framework that includes recurrent neural networks and quantile regression. Moreover, this framework is able to produce a prediction interval to detect and evaluate abnormal building energy consumption. The framework has been applied to analyze the energy data collected from three different residential houses, and anomaly detection results are evaluated by the quantile regression range. The research results can provide promising solutions for building managers to detect abnormal energy performance, and is also valuable to assess the level of anomalies and spot opportunities in energy conservation.</abstract><cop>Lausanne</cop><pub>Elsevier B.V</pub><doi>10.1016/j.enbuild.2020.109864</doi></addata></record>
fulltext fulltext
identifier ISSN: 0378-7788
ispartof Energy and buildings, 2020-05, Vol.215, p.109864, Article 109864
issn 0378-7788
1872-6178
language eng
recordid cdi_proquest_journals_2438725592
source Access via ScienceDirect (Elsevier)
subjects Anomalies
Anomaly detection
Building energy management
Buildings
Data mining
Deep learning
Energy conservation
Energy consumption
Energy management
Energy management systems
Houses
Housing
Machine learning
Neural networks
Quantile regression
Recurrent neural networks
Regression analysis
Residential areas
Residential buildings
Residential energy
title A hybrid data mining approach for anomaly detection and evaluation in residential buildings energy data
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T23%3A27%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20hybrid%20data%20mining%20approach%20for%20anomaly%20detection%20and%20evaluation%20in%20residential%20buildings%20energy%20data&rft.jtitle=Energy%20and%20buildings&rft.au=Xu,%20Chengliang&rft.date=2020-05-15&rft.volume=215&rft.spage=109864&rft.pages=109864-&rft.artnum=109864&rft.issn=0378-7788&rft.eissn=1872-6178&rft_id=info:doi/10.1016/j.enbuild.2020.109864&rft_dat=%3Cproquest_cross%3E2438725592%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2438725592&rft_id=info:pmid/&rft_els_id=S0378778819333158&rfr_iscdi=true