A hybrid data mining approach for anomaly detection and evaluation in residential buildings energy data
With the development in information technologies, today's building energy consumption can be well monitored by the building energy management systems. However, in most real applications there is no clear definition of abnormal building energy consumption. To overcome this limitation, this work...
Gespeichert in:
Veröffentlicht in: | Energy and buildings 2020-05, Vol.215, p.109864, Article 109864 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 109864 |
container_title | Energy and buildings |
container_volume | 215 |
creator | Xu, Chengliang Chen, Huanxin |
description | With the development in information technologies, today's building energy consumption can be well monitored by the building energy management systems. However, in most real applications there is no clear definition of abnormal building energy consumption. To overcome this limitation, this work proposes a novel deep learning based unsupervised anomaly detection framework that includes recurrent neural networks and quantile regression. Moreover, this framework is able to produce a prediction interval to detect and evaluate abnormal building energy consumption. The framework has been applied to analyze the energy data collected from three different residential houses, and anomaly detection results are evaluated by the quantile regression range. The research results can provide promising solutions for building managers to detect abnormal energy performance, and is also valuable to assess the level of anomalies and spot opportunities in energy conservation. |
doi_str_mv | 10.1016/j.enbuild.2020.109864 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2438725592</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0378778819333158</els_id><sourcerecordid>2438725592</sourcerecordid><originalsourceid>FETCH-LOGICAL-c337t-2fa93edc2d394097c6e0a167af226da693f3ec972f8bb2e7911982dc94d823133</originalsourceid><addsrcrecordid>eNqFkMtqwzAQRUVpoWnaTygIunaqh21JqxJCXxDopl0LWRonMo6cSk4gf1_lse9qmMudOzMHoUdKZpTQ-rmbQWh2vnczRthRU7Iur9CESsGKmgp5jSaEC1kIIeUtukupI4TUlaATtJrj9aGJ3mFnRoM3Pviwwma7jYOxa9wOEZswbEx_wA5GsKMfQlYchr3pd-bU-oAjJO8gjN70-HRKTkkYAsTV4ZR8j25a0yd4uNQp-nl7_V58FMuv98_FfFlYzsVYsNYoDs4yx1VJlLA1EENrYVrGamdqxVsOVgnWyqZhIBSlSjJnVekk45TzKXo65-YHfneQRt0NuxjySs1KnoFUlWLZVZ1dNg4pRWj1NvqNiQdNiT4y1Z2-MNVHpvrMNM-9nOcgv7D3EHWyHoIF52Nmo93g_0n4AzWBg1c</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2438725592</pqid></control><display><type>article</type><title>A hybrid data mining approach for anomaly detection and evaluation in residential buildings energy data</title><source>Access via ScienceDirect (Elsevier)</source><creator>Xu, Chengliang ; Chen, Huanxin</creator><creatorcontrib>Xu, Chengliang ; Chen, Huanxin</creatorcontrib><description>With the development in information technologies, today's building energy consumption can be well monitored by the building energy management systems. However, in most real applications there is no clear definition of abnormal building energy consumption. To overcome this limitation, this work proposes a novel deep learning based unsupervised anomaly detection framework that includes recurrent neural networks and quantile regression. Moreover, this framework is able to produce a prediction interval to detect and evaluate abnormal building energy consumption. The framework has been applied to analyze the energy data collected from three different residential houses, and anomaly detection results are evaluated by the quantile regression range. The research results can provide promising solutions for building managers to detect abnormal energy performance, and is also valuable to assess the level of anomalies and spot opportunities in energy conservation.</description><identifier>ISSN: 0378-7788</identifier><identifier>EISSN: 1872-6178</identifier><identifier>DOI: 10.1016/j.enbuild.2020.109864</identifier><language>eng</language><publisher>Lausanne: Elsevier B.V</publisher><subject>Anomalies ; Anomaly detection ; Building energy management ; Buildings ; Data mining ; Deep learning ; Energy conservation ; Energy consumption ; Energy management ; Energy management systems ; Houses ; Housing ; Machine learning ; Neural networks ; Quantile regression ; Recurrent neural networks ; Regression analysis ; Residential areas ; Residential buildings ; Residential energy</subject><ispartof>Energy and buildings, 2020-05, Vol.215, p.109864, Article 109864</ispartof><rights>2020</rights><rights>Copyright Elsevier BV May 15, 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c337t-2fa93edc2d394097c6e0a167af226da693f3ec972f8bb2e7911982dc94d823133</citedby><cites>FETCH-LOGICAL-c337t-2fa93edc2d394097c6e0a167af226da693f3ec972f8bb2e7911982dc94d823133</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.enbuild.2020.109864$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Xu, Chengliang</creatorcontrib><creatorcontrib>Chen, Huanxin</creatorcontrib><title>A hybrid data mining approach for anomaly detection and evaluation in residential buildings energy data</title><title>Energy and buildings</title><description>With the development in information technologies, today's building energy consumption can be well monitored by the building energy management systems. However, in most real applications there is no clear definition of abnormal building energy consumption. To overcome this limitation, this work proposes a novel deep learning based unsupervised anomaly detection framework that includes recurrent neural networks and quantile regression. Moreover, this framework is able to produce a prediction interval to detect and evaluate abnormal building energy consumption. The framework has been applied to analyze the energy data collected from three different residential houses, and anomaly detection results are evaluated by the quantile regression range. The research results can provide promising solutions for building managers to detect abnormal energy performance, and is also valuable to assess the level of anomalies and spot opportunities in energy conservation.</description><subject>Anomalies</subject><subject>Anomaly detection</subject><subject>Building energy management</subject><subject>Buildings</subject><subject>Data mining</subject><subject>Deep learning</subject><subject>Energy conservation</subject><subject>Energy consumption</subject><subject>Energy management</subject><subject>Energy management systems</subject><subject>Houses</subject><subject>Housing</subject><subject>Machine learning</subject><subject>Neural networks</subject><subject>Quantile regression</subject><subject>Recurrent neural networks</subject><subject>Regression analysis</subject><subject>Residential areas</subject><subject>Residential buildings</subject><subject>Residential energy</subject><issn>0378-7788</issn><issn>1872-6178</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqFkMtqwzAQRUVpoWnaTygIunaqh21JqxJCXxDopl0LWRonMo6cSk4gf1_lse9qmMudOzMHoUdKZpTQ-rmbQWh2vnczRthRU7Iur9CESsGKmgp5jSaEC1kIIeUtukupI4TUlaATtJrj9aGJ3mFnRoM3Pviwwma7jYOxa9wOEZswbEx_wA5GsKMfQlYchr3pd-bU-oAjJO8gjN70-HRKTkkYAsTV4ZR8j25a0yd4uNQp-nl7_V58FMuv98_FfFlYzsVYsNYoDs4yx1VJlLA1EENrYVrGamdqxVsOVgnWyqZhIBSlSjJnVekk45TzKXo65-YHfneQRt0NuxjySs1KnoFUlWLZVZ1dNg4pRWj1NvqNiQdNiT4y1Z2-MNVHpvrMNM-9nOcgv7D3EHWyHoIF52Nmo93g_0n4AzWBg1c</recordid><startdate>20200515</startdate><enddate>20200515</enddate><creator>Xu, Chengliang</creator><creator>Chen, Huanxin</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>KR7</scope><scope>SOI</scope></search><sort><creationdate>20200515</creationdate><title>A hybrid data mining approach for anomaly detection and evaluation in residential buildings energy data</title><author>Xu, Chengliang ; Chen, Huanxin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c337t-2fa93edc2d394097c6e0a167af226da693f3ec972f8bb2e7911982dc94d823133</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Anomalies</topic><topic>Anomaly detection</topic><topic>Building energy management</topic><topic>Buildings</topic><topic>Data mining</topic><topic>Deep learning</topic><topic>Energy conservation</topic><topic>Energy consumption</topic><topic>Energy management</topic><topic>Energy management systems</topic><topic>Houses</topic><topic>Housing</topic><topic>Machine learning</topic><topic>Neural networks</topic><topic>Quantile regression</topic><topic>Recurrent neural networks</topic><topic>Regression analysis</topic><topic>Residential areas</topic><topic>Residential buildings</topic><topic>Residential energy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xu, Chengliang</creatorcontrib><creatorcontrib>Chen, Huanxin</creatorcontrib><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Environment Abstracts</collection><jtitle>Energy and buildings</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xu, Chengliang</au><au>Chen, Huanxin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A hybrid data mining approach for anomaly detection and evaluation in residential buildings energy data</atitle><jtitle>Energy and buildings</jtitle><date>2020-05-15</date><risdate>2020</risdate><volume>215</volume><spage>109864</spage><pages>109864-</pages><artnum>109864</artnum><issn>0378-7788</issn><eissn>1872-6178</eissn><abstract>With the development in information technologies, today's building energy consumption can be well monitored by the building energy management systems. However, in most real applications there is no clear definition of abnormal building energy consumption. To overcome this limitation, this work proposes a novel deep learning based unsupervised anomaly detection framework that includes recurrent neural networks and quantile regression. Moreover, this framework is able to produce a prediction interval to detect and evaluate abnormal building energy consumption. The framework has been applied to analyze the energy data collected from three different residential houses, and anomaly detection results are evaluated by the quantile regression range. The research results can provide promising solutions for building managers to detect abnormal energy performance, and is also valuable to assess the level of anomalies and spot opportunities in energy conservation.</abstract><cop>Lausanne</cop><pub>Elsevier B.V</pub><doi>10.1016/j.enbuild.2020.109864</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0378-7788 |
ispartof | Energy and buildings, 2020-05, Vol.215, p.109864, Article 109864 |
issn | 0378-7788 1872-6178 |
language | eng |
recordid | cdi_proquest_journals_2438725592 |
source | Access via ScienceDirect (Elsevier) |
subjects | Anomalies Anomaly detection Building energy management Buildings Data mining Deep learning Energy conservation Energy consumption Energy management Energy management systems Houses Housing Machine learning Neural networks Quantile regression Recurrent neural networks Regression analysis Residential areas Residential buildings Residential energy |
title | A hybrid data mining approach for anomaly detection and evaluation in residential buildings energy data |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T23%3A27%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20hybrid%20data%20mining%20approach%20for%20anomaly%20detection%20and%20evaluation%20in%20residential%20buildings%20energy%20data&rft.jtitle=Energy%20and%20buildings&rft.au=Xu,%20Chengliang&rft.date=2020-05-15&rft.volume=215&rft.spage=109864&rft.pages=109864-&rft.artnum=109864&rft.issn=0378-7788&rft.eissn=1872-6178&rft_id=info:doi/10.1016/j.enbuild.2020.109864&rft_dat=%3Cproquest_cross%3E2438725592%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2438725592&rft_id=info:pmid/&rft_els_id=S0378778819333158&rfr_iscdi=true |