Structural evolution and electrochemistry of the Mn-Rich P2– Na2/3Mn0.9Ti0.05Fe0.05O2 positive electrode material
Positive electrodes still limit the maximum attainable energy density of Na-ion batteries. Increasing the amount of electrochemically active transition metal is one way of improving energy density. However, this is complicated by the balance between initial capacity and structural stability/capacity...
Gespeichert in:
Veröffentlicht in: | Electrochimica acta 2020-05, Vol.341, p.135978, Article 135978 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 135978 |
container_title | Electrochimica acta |
container_volume | 341 |
creator | Stansby, Jennifer H. Dose, Wesley M. Sharma, Neeraj Kimpton, Justin A. López del Amo, Juan Miguel Gonzalo, Elena Rojo, Teófilo |
description | Positive electrodes still limit the maximum attainable energy density of Na-ion batteries. Increasing the amount of electrochemically active transition metal is one way of improving energy density. However, this is complicated by the balance between initial capacity and structural stability/capacity retention. Here, the Mn-rich P2– Na2/3Mn0.9Fe0.05Ti0.05O2 is synthesised via the solid-state method and its structural evolution during operation, between 1.9 and 4.2 V, investigated. Through operando X-ray powder diffraction data, no evidence is found for the formation of Z, OP4 or O2 phases and the material primarily displays regions of two-phase coexistence. P2– Na2/3Mn0.9Fe0.05Ti0.05O2 delivers a second charge/discharge capacity of 152/164 mAh.g−1 at C/10, within the voltage range 4.0–2.0 V and retains 75% of the dis-charge capacity at the 50th cycle. A detailed comparison, in terms of both the electrochemical performance and structural evolution, to related Mn-rich phases is provided. The results further demonstrate that structural stability and battery performance can be improved through subtle co-substitutions. |
doi_str_mv | 10.1016/j.electacta.2020.135978 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2438725059</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0013468620303704</els_id><sourcerecordid>2438725059</sourcerecordid><originalsourceid>FETCH-LOGICAL-c409t-3557c7bdea8993bb64be93eb3841febd1ccef8b9a7cebd53ab5539f3e3c3e4df3</originalsourceid><addsrcrecordid>eNqFkFFLwzAQx4MoOKefwYDP7dKmaZrHMZwKmxOdzyFNryyja2aSDvbmd_Ab-knsnPoqHHfc8b__cT-ErhMSJyTJR-sYGtBB9RGnJO2nlAlenKBBUnAa0YKJUzQgJKFRlhf5Obrwfk0I4TknA-Rfgut06JxqMOxs0wVjW6zaCn-7OqtXsDE-uD22NQ4rwPM2ejZ6hZ_Sz_cP_KjSEZ23JBZLQ2LCpnDIixRvrTfB7ODXpwK8UQGcUc0lOqtV4-Hqpw7R6_R2ObmPZou7h8l4FumMiBBRxrjmZQWqEIKWZZ6VICiUtMiSGsoq0RrqohSK675jVJWMUVFToJpCVtV0iG6Ovltn3zrwQa5t59r-pEwzWvCUESZ6FT-qtLPeO6jl1pmNcnuZEHkgLNfyj7A8EJZHwv3m-LgJ_RM7A056baDVUBnX62Vlzb8eX_DDieA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2438725059</pqid></control><display><type>article</type><title>Structural evolution and electrochemistry of the Mn-Rich P2– Na2/3Mn0.9Ti0.05Fe0.05O2 positive electrode material</title><source>Elsevier ScienceDirect Journals</source><creator>Stansby, Jennifer H. ; Dose, Wesley M. ; Sharma, Neeraj ; Kimpton, Justin A. ; López del Amo, Juan Miguel ; Gonzalo, Elena ; Rojo, Teófilo</creator><creatorcontrib>Stansby, Jennifer H. ; Dose, Wesley M. ; Sharma, Neeraj ; Kimpton, Justin A. ; López del Amo, Juan Miguel ; Gonzalo, Elena ; Rojo, Teófilo</creatorcontrib><description>Positive electrodes still limit the maximum attainable energy density of Na-ion batteries. Increasing the amount of electrochemically active transition metal is one way of improving energy density. However, this is complicated by the balance between initial capacity and structural stability/capacity retention. Here, the Mn-rich P2– Na2/3Mn0.9Fe0.05Ti0.05O2 is synthesised via the solid-state method and its structural evolution during operation, between 1.9 and 4.2 V, investigated. Through operando X-ray powder diffraction data, no evidence is found for the formation of Z, OP4 or O2 phases and the material primarily displays regions of two-phase coexistence. P2– Na2/3Mn0.9Fe0.05Ti0.05O2 delivers a second charge/discharge capacity of 152/164 mAh.g−1 at C/10, within the voltage range 4.0–2.0 V and retains 75% of the dis-charge capacity at the 50th cycle. A detailed comparison, in terms of both the electrochemical performance and structural evolution, to related Mn-rich phases is provided. The results further demonstrate that structural stability and battery performance can be improved through subtle co-substitutions.</description><identifier>ISSN: 0013-4686</identifier><identifier>EISSN: 1873-3859</identifier><identifier>DOI: 10.1016/j.electacta.2020.135978</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Electrochemical analysis ; Electrochemistry ; Electrode materials ; Electrodes ; Evolution ; Flux density ; Rechargeable batteries ; Structural stability ; Transition metals ; X ray powder diffraction</subject><ispartof>Electrochimica acta, 2020-05, Vol.341, p.135978, Article 135978</ispartof><rights>2020 Elsevier Ltd</rights><rights>Copyright Elsevier BV May 1, 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c409t-3557c7bdea8993bb64be93eb3841febd1ccef8b9a7cebd53ab5539f3e3c3e4df3</citedby><cites>FETCH-LOGICAL-c409t-3557c7bdea8993bb64be93eb3841febd1ccef8b9a7cebd53ab5539f3e3c3e4df3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0013468620303704$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Stansby, Jennifer H.</creatorcontrib><creatorcontrib>Dose, Wesley M.</creatorcontrib><creatorcontrib>Sharma, Neeraj</creatorcontrib><creatorcontrib>Kimpton, Justin A.</creatorcontrib><creatorcontrib>López del Amo, Juan Miguel</creatorcontrib><creatorcontrib>Gonzalo, Elena</creatorcontrib><creatorcontrib>Rojo, Teófilo</creatorcontrib><title>Structural evolution and electrochemistry of the Mn-Rich P2– Na2/3Mn0.9Ti0.05Fe0.05O2 positive electrode material</title><title>Electrochimica acta</title><description>Positive electrodes still limit the maximum attainable energy density of Na-ion batteries. Increasing the amount of electrochemically active transition metal is one way of improving energy density. However, this is complicated by the balance between initial capacity and structural stability/capacity retention. Here, the Mn-rich P2– Na2/3Mn0.9Fe0.05Ti0.05O2 is synthesised via the solid-state method and its structural evolution during operation, between 1.9 and 4.2 V, investigated. Through operando X-ray powder diffraction data, no evidence is found for the formation of Z, OP4 or O2 phases and the material primarily displays regions of two-phase coexistence. P2– Na2/3Mn0.9Fe0.05Ti0.05O2 delivers a second charge/discharge capacity of 152/164 mAh.g−1 at C/10, within the voltage range 4.0–2.0 V and retains 75% of the dis-charge capacity at the 50th cycle. A detailed comparison, in terms of both the electrochemical performance and structural evolution, to related Mn-rich phases is provided. The results further demonstrate that structural stability and battery performance can be improved through subtle co-substitutions.</description><subject>Electrochemical analysis</subject><subject>Electrochemistry</subject><subject>Electrode materials</subject><subject>Electrodes</subject><subject>Evolution</subject><subject>Flux density</subject><subject>Rechargeable batteries</subject><subject>Structural stability</subject><subject>Transition metals</subject><subject>X ray powder diffraction</subject><issn>0013-4686</issn><issn>1873-3859</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqFkFFLwzAQx4MoOKefwYDP7dKmaZrHMZwKmxOdzyFNryyja2aSDvbmd_Ab-knsnPoqHHfc8b__cT-ErhMSJyTJR-sYGtBB9RGnJO2nlAlenKBBUnAa0YKJUzQgJKFRlhf5Obrwfk0I4TknA-Rfgut06JxqMOxs0wVjW6zaCn-7OqtXsDE-uD22NQ4rwPM2ejZ6hZ_Sz_cP_KjSEZ23JBZLQ2LCpnDIixRvrTfB7ODXpwK8UQGcUc0lOqtV4-Hqpw7R6_R2ObmPZou7h8l4FumMiBBRxrjmZQWqEIKWZZ6VICiUtMiSGsoq0RrqohSK675jVJWMUVFToJpCVtV0iG6Ovltn3zrwQa5t59r-pEwzWvCUESZ6FT-qtLPeO6jl1pmNcnuZEHkgLNfyj7A8EJZHwv3m-LgJ_RM7A056baDVUBnX62Vlzb8eX_DDieA</recordid><startdate>20200501</startdate><enddate>20200501</enddate><creator>Stansby, Jennifer H.</creator><creator>Dose, Wesley M.</creator><creator>Sharma, Neeraj</creator><creator>Kimpton, Justin A.</creator><creator>López del Amo, Juan Miguel</creator><creator>Gonzalo, Elena</creator><creator>Rojo, Teófilo</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20200501</creationdate><title>Structural evolution and electrochemistry of the Mn-Rich P2– Na2/3Mn0.9Ti0.05Fe0.05O2 positive electrode material</title><author>Stansby, Jennifer H. ; Dose, Wesley M. ; Sharma, Neeraj ; Kimpton, Justin A. ; López del Amo, Juan Miguel ; Gonzalo, Elena ; Rojo, Teófilo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c409t-3557c7bdea8993bb64be93eb3841febd1ccef8b9a7cebd53ab5539f3e3c3e4df3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Electrochemical analysis</topic><topic>Electrochemistry</topic><topic>Electrode materials</topic><topic>Electrodes</topic><topic>Evolution</topic><topic>Flux density</topic><topic>Rechargeable batteries</topic><topic>Structural stability</topic><topic>Transition metals</topic><topic>X ray powder diffraction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Stansby, Jennifer H.</creatorcontrib><creatorcontrib>Dose, Wesley M.</creatorcontrib><creatorcontrib>Sharma, Neeraj</creatorcontrib><creatorcontrib>Kimpton, Justin A.</creatorcontrib><creatorcontrib>López del Amo, Juan Miguel</creatorcontrib><creatorcontrib>Gonzalo, Elena</creatorcontrib><creatorcontrib>Rojo, Teófilo</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Electrochimica acta</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Stansby, Jennifer H.</au><au>Dose, Wesley M.</au><au>Sharma, Neeraj</au><au>Kimpton, Justin A.</au><au>López del Amo, Juan Miguel</au><au>Gonzalo, Elena</au><au>Rojo, Teófilo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structural evolution and electrochemistry of the Mn-Rich P2– Na2/3Mn0.9Ti0.05Fe0.05O2 positive electrode material</atitle><jtitle>Electrochimica acta</jtitle><date>2020-05-01</date><risdate>2020</risdate><volume>341</volume><spage>135978</spage><pages>135978-</pages><artnum>135978</artnum><issn>0013-4686</issn><eissn>1873-3859</eissn><abstract>Positive electrodes still limit the maximum attainable energy density of Na-ion batteries. Increasing the amount of electrochemically active transition metal is one way of improving energy density. However, this is complicated by the balance between initial capacity and structural stability/capacity retention. Here, the Mn-rich P2– Na2/3Mn0.9Fe0.05Ti0.05O2 is synthesised via the solid-state method and its structural evolution during operation, between 1.9 and 4.2 V, investigated. Through operando X-ray powder diffraction data, no evidence is found for the formation of Z, OP4 or O2 phases and the material primarily displays regions of two-phase coexistence. P2– Na2/3Mn0.9Fe0.05Ti0.05O2 delivers a second charge/discharge capacity of 152/164 mAh.g−1 at C/10, within the voltage range 4.0–2.0 V and retains 75% of the dis-charge capacity at the 50th cycle. A detailed comparison, in terms of both the electrochemical performance and structural evolution, to related Mn-rich phases is provided. The results further demonstrate that structural stability and battery performance can be improved through subtle co-substitutions.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.electacta.2020.135978</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0013-4686 |
ispartof | Electrochimica acta, 2020-05, Vol.341, p.135978, Article 135978 |
issn | 0013-4686 1873-3859 |
language | eng |
recordid | cdi_proquest_journals_2438725059 |
source | Elsevier ScienceDirect Journals |
subjects | Electrochemical analysis Electrochemistry Electrode materials Electrodes Evolution Flux density Rechargeable batteries Structural stability Transition metals X ray powder diffraction |
title | Structural evolution and electrochemistry of the Mn-Rich P2– Na2/3Mn0.9Ti0.05Fe0.05O2 positive electrode material |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T13%3A24%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structural%20evolution%20and%20electrochemistry%20of%20the%20Mn-Rich%20P2%E2%80%93%20Na2/3Mn0.9Ti0.05Fe0.05O2%20positive%20electrode%20material&rft.jtitle=Electrochimica%20acta&rft.au=Stansby,%20Jennifer%20H.&rft.date=2020-05-01&rft.volume=341&rft.spage=135978&rft.pages=135978-&rft.artnum=135978&rft.issn=0013-4686&rft.eissn=1873-3859&rft_id=info:doi/10.1016/j.electacta.2020.135978&rft_dat=%3Cproquest_cross%3E2438725059%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2438725059&rft_id=info:pmid/&rft_els_id=S0013468620303704&rfr_iscdi=true |