Structural evolution and electrochemistry of the Mn-Rich P2– Na2/3Mn0.9Ti0.05Fe0.05O2 positive electrode material

Positive electrodes still limit the maximum attainable energy density of Na-ion batteries. Increasing the amount of electrochemically active transition metal is one way of improving energy density. However, this is complicated by the balance between initial capacity and structural stability/capacity...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Electrochimica acta 2020-05, Vol.341, p.135978, Article 135978
Hauptverfasser: Stansby, Jennifer H., Dose, Wesley M., Sharma, Neeraj, Kimpton, Justin A., López del Amo, Juan Miguel, Gonzalo, Elena, Rojo, Teófilo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 135978
container_title Electrochimica acta
container_volume 341
creator Stansby, Jennifer H.
Dose, Wesley M.
Sharma, Neeraj
Kimpton, Justin A.
López del Amo, Juan Miguel
Gonzalo, Elena
Rojo, Teófilo
description Positive electrodes still limit the maximum attainable energy density of Na-ion batteries. Increasing the amount of electrochemically active transition metal is one way of improving energy density. However, this is complicated by the balance between initial capacity and structural stability/capacity retention. Here, the Mn-rich P2– Na2/3Mn0.9Fe0.05Ti0.05O2 is synthesised via the solid-state method and its structural evolution during operation, between 1.9 and 4.2 V, investigated. Through operando X-ray powder diffraction data, no evidence is found for the formation of Z, OP4 or O2 phases and the material primarily displays regions of two-phase coexistence. P2– Na2/3Mn0.9Fe0.05Ti0.05O2 delivers a second charge/discharge capacity of 152/164 mAh.g−1 at C/10, within the voltage range 4.0–2.0 V and retains 75% of the dis-charge capacity at the 50th cycle. A detailed comparison, in terms of both the electrochemical performance and structural evolution, to related Mn-rich phases is provided. The results further demonstrate that structural stability and battery performance can be improved through subtle co-substitutions.
doi_str_mv 10.1016/j.electacta.2020.135978
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2438725059</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0013468620303704</els_id><sourcerecordid>2438725059</sourcerecordid><originalsourceid>FETCH-LOGICAL-c409t-3557c7bdea8993bb64be93eb3841febd1ccef8b9a7cebd53ab5539f3e3c3e4df3</originalsourceid><addsrcrecordid>eNqFkFFLwzAQx4MoOKefwYDP7dKmaZrHMZwKmxOdzyFNryyja2aSDvbmd_Ab-knsnPoqHHfc8b__cT-ErhMSJyTJR-sYGtBB9RGnJO2nlAlenKBBUnAa0YKJUzQgJKFRlhf5Obrwfk0I4TknA-Rfgut06JxqMOxs0wVjW6zaCn-7OqtXsDE-uD22NQ4rwPM2ejZ6hZ_Sz_cP_KjSEZ23JBZLQ2LCpnDIixRvrTfB7ODXpwK8UQGcUc0lOqtV4-Hqpw7R6_R2ObmPZou7h8l4FumMiBBRxrjmZQWqEIKWZZ6VICiUtMiSGsoq0RrqohSK675jVJWMUVFToJpCVtV0iG6Ovltn3zrwQa5t59r-pEwzWvCUESZ6FT-qtLPeO6jl1pmNcnuZEHkgLNfyj7A8EJZHwv3m-LgJ_RM7A056baDVUBnX62Vlzb8eX_DDieA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2438725059</pqid></control><display><type>article</type><title>Structural evolution and electrochemistry of the Mn-Rich P2– Na2/3Mn0.9Ti0.05Fe0.05O2 positive electrode material</title><source>Elsevier ScienceDirect Journals</source><creator>Stansby, Jennifer H. ; Dose, Wesley M. ; Sharma, Neeraj ; Kimpton, Justin A. ; López del Amo, Juan Miguel ; Gonzalo, Elena ; Rojo, Teófilo</creator><creatorcontrib>Stansby, Jennifer H. ; Dose, Wesley M. ; Sharma, Neeraj ; Kimpton, Justin A. ; López del Amo, Juan Miguel ; Gonzalo, Elena ; Rojo, Teófilo</creatorcontrib><description>Positive electrodes still limit the maximum attainable energy density of Na-ion batteries. Increasing the amount of electrochemically active transition metal is one way of improving energy density. However, this is complicated by the balance between initial capacity and structural stability/capacity retention. Here, the Mn-rich P2– Na2/3Mn0.9Fe0.05Ti0.05O2 is synthesised via the solid-state method and its structural evolution during operation, between 1.9 and 4.2 V, investigated. Through operando X-ray powder diffraction data, no evidence is found for the formation of Z, OP4 or O2 phases and the material primarily displays regions of two-phase coexistence. P2– Na2/3Mn0.9Fe0.05Ti0.05O2 delivers a second charge/discharge capacity of 152/164 mAh.g−1 at C/10, within the voltage range 4.0–2.0 V and retains 75% of the dis-charge capacity at the 50th cycle. A detailed comparison, in terms of both the electrochemical performance and structural evolution, to related Mn-rich phases is provided. The results further demonstrate that structural stability and battery performance can be improved through subtle co-substitutions.</description><identifier>ISSN: 0013-4686</identifier><identifier>EISSN: 1873-3859</identifier><identifier>DOI: 10.1016/j.electacta.2020.135978</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Electrochemical analysis ; Electrochemistry ; Electrode materials ; Electrodes ; Evolution ; Flux density ; Rechargeable batteries ; Structural stability ; Transition metals ; X ray powder diffraction</subject><ispartof>Electrochimica acta, 2020-05, Vol.341, p.135978, Article 135978</ispartof><rights>2020 Elsevier Ltd</rights><rights>Copyright Elsevier BV May 1, 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c409t-3557c7bdea8993bb64be93eb3841febd1ccef8b9a7cebd53ab5539f3e3c3e4df3</citedby><cites>FETCH-LOGICAL-c409t-3557c7bdea8993bb64be93eb3841febd1ccef8b9a7cebd53ab5539f3e3c3e4df3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0013468620303704$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Stansby, Jennifer H.</creatorcontrib><creatorcontrib>Dose, Wesley M.</creatorcontrib><creatorcontrib>Sharma, Neeraj</creatorcontrib><creatorcontrib>Kimpton, Justin A.</creatorcontrib><creatorcontrib>López del Amo, Juan Miguel</creatorcontrib><creatorcontrib>Gonzalo, Elena</creatorcontrib><creatorcontrib>Rojo, Teófilo</creatorcontrib><title>Structural evolution and electrochemistry of the Mn-Rich P2– Na2/3Mn0.9Ti0.05Fe0.05O2 positive electrode material</title><title>Electrochimica acta</title><description>Positive electrodes still limit the maximum attainable energy density of Na-ion batteries. Increasing the amount of electrochemically active transition metal is one way of improving energy density. However, this is complicated by the balance between initial capacity and structural stability/capacity retention. Here, the Mn-rich P2– Na2/3Mn0.9Fe0.05Ti0.05O2 is synthesised via the solid-state method and its structural evolution during operation, between 1.9 and 4.2 V, investigated. Through operando X-ray powder diffraction data, no evidence is found for the formation of Z, OP4 or O2 phases and the material primarily displays regions of two-phase coexistence. P2– Na2/3Mn0.9Fe0.05Ti0.05O2 delivers a second charge/discharge capacity of 152/164 mAh.g−1 at C/10, within the voltage range 4.0–2.0 V and retains 75% of the dis-charge capacity at the 50th cycle. A detailed comparison, in terms of both the electrochemical performance and structural evolution, to related Mn-rich phases is provided. The results further demonstrate that structural stability and battery performance can be improved through subtle co-substitutions.</description><subject>Electrochemical analysis</subject><subject>Electrochemistry</subject><subject>Electrode materials</subject><subject>Electrodes</subject><subject>Evolution</subject><subject>Flux density</subject><subject>Rechargeable batteries</subject><subject>Structural stability</subject><subject>Transition metals</subject><subject>X ray powder diffraction</subject><issn>0013-4686</issn><issn>1873-3859</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqFkFFLwzAQx4MoOKefwYDP7dKmaZrHMZwKmxOdzyFNryyja2aSDvbmd_Ab-knsnPoqHHfc8b__cT-ErhMSJyTJR-sYGtBB9RGnJO2nlAlenKBBUnAa0YKJUzQgJKFRlhf5Obrwfk0I4TknA-Rfgut06JxqMOxs0wVjW6zaCn-7OqtXsDE-uD22NQ4rwPM2ejZ6hZ_Sz_cP_KjSEZ23JBZLQ2LCpnDIixRvrTfB7ODXpwK8UQGcUc0lOqtV4-Hqpw7R6_R2ObmPZou7h8l4FumMiBBRxrjmZQWqEIKWZZ6VICiUtMiSGsoq0RrqohSK675jVJWMUVFToJpCVtV0iG6Ovltn3zrwQa5t59r-pEwzWvCUESZ6FT-qtLPeO6jl1pmNcnuZEHkgLNfyj7A8EJZHwv3m-LgJ_RM7A056baDVUBnX62Vlzb8eX_DDieA</recordid><startdate>20200501</startdate><enddate>20200501</enddate><creator>Stansby, Jennifer H.</creator><creator>Dose, Wesley M.</creator><creator>Sharma, Neeraj</creator><creator>Kimpton, Justin A.</creator><creator>López del Amo, Juan Miguel</creator><creator>Gonzalo, Elena</creator><creator>Rojo, Teófilo</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20200501</creationdate><title>Structural evolution and electrochemistry of the Mn-Rich P2– Na2/3Mn0.9Ti0.05Fe0.05O2 positive electrode material</title><author>Stansby, Jennifer H. ; Dose, Wesley M. ; Sharma, Neeraj ; Kimpton, Justin A. ; López del Amo, Juan Miguel ; Gonzalo, Elena ; Rojo, Teófilo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c409t-3557c7bdea8993bb64be93eb3841febd1ccef8b9a7cebd53ab5539f3e3c3e4df3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Electrochemical analysis</topic><topic>Electrochemistry</topic><topic>Electrode materials</topic><topic>Electrodes</topic><topic>Evolution</topic><topic>Flux density</topic><topic>Rechargeable batteries</topic><topic>Structural stability</topic><topic>Transition metals</topic><topic>X ray powder diffraction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Stansby, Jennifer H.</creatorcontrib><creatorcontrib>Dose, Wesley M.</creatorcontrib><creatorcontrib>Sharma, Neeraj</creatorcontrib><creatorcontrib>Kimpton, Justin A.</creatorcontrib><creatorcontrib>López del Amo, Juan Miguel</creatorcontrib><creatorcontrib>Gonzalo, Elena</creatorcontrib><creatorcontrib>Rojo, Teófilo</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Electrochimica acta</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Stansby, Jennifer H.</au><au>Dose, Wesley M.</au><au>Sharma, Neeraj</au><au>Kimpton, Justin A.</au><au>López del Amo, Juan Miguel</au><au>Gonzalo, Elena</au><au>Rojo, Teófilo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structural evolution and electrochemistry of the Mn-Rich P2– Na2/3Mn0.9Ti0.05Fe0.05O2 positive electrode material</atitle><jtitle>Electrochimica acta</jtitle><date>2020-05-01</date><risdate>2020</risdate><volume>341</volume><spage>135978</spage><pages>135978-</pages><artnum>135978</artnum><issn>0013-4686</issn><eissn>1873-3859</eissn><abstract>Positive electrodes still limit the maximum attainable energy density of Na-ion batteries. Increasing the amount of electrochemically active transition metal is one way of improving energy density. However, this is complicated by the balance between initial capacity and structural stability/capacity retention. Here, the Mn-rich P2– Na2/3Mn0.9Fe0.05Ti0.05O2 is synthesised via the solid-state method and its structural evolution during operation, between 1.9 and 4.2 V, investigated. Through operando X-ray powder diffraction data, no evidence is found for the formation of Z, OP4 or O2 phases and the material primarily displays regions of two-phase coexistence. P2– Na2/3Mn0.9Fe0.05Ti0.05O2 delivers a second charge/discharge capacity of 152/164 mAh.g−1 at C/10, within the voltage range 4.0–2.0 V and retains 75% of the dis-charge capacity at the 50th cycle. A detailed comparison, in terms of both the electrochemical performance and structural evolution, to related Mn-rich phases is provided. The results further demonstrate that structural stability and battery performance can be improved through subtle co-substitutions.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.electacta.2020.135978</doi></addata></record>
fulltext fulltext
identifier ISSN: 0013-4686
ispartof Electrochimica acta, 2020-05, Vol.341, p.135978, Article 135978
issn 0013-4686
1873-3859
language eng
recordid cdi_proquest_journals_2438725059
source Elsevier ScienceDirect Journals
subjects Electrochemical analysis
Electrochemistry
Electrode materials
Electrodes
Evolution
Flux density
Rechargeable batteries
Structural stability
Transition metals
X ray powder diffraction
title Structural evolution and electrochemistry of the Mn-Rich P2– Na2/3Mn0.9Ti0.05Fe0.05O2 positive electrode material
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T13%3A24%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structural%20evolution%20and%20electrochemistry%20of%20the%20Mn-Rich%20P2%E2%80%93%20Na2/3Mn0.9Ti0.05Fe0.05O2%20positive%20electrode%20material&rft.jtitle=Electrochimica%20acta&rft.au=Stansby,%20Jennifer%20H.&rft.date=2020-05-01&rft.volume=341&rft.spage=135978&rft.pages=135978-&rft.artnum=135978&rft.issn=0013-4686&rft.eissn=1873-3859&rft_id=info:doi/10.1016/j.electacta.2020.135978&rft_dat=%3Cproquest_cross%3E2438725059%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2438725059&rft_id=info:pmid/&rft_els_id=S0013468620303704&rfr_iscdi=true