Chemical looping oxidative steam reforming of methanol: A new pathway for auto-thermal conversion

[Display omitted] •A new approach was proposed for oxidative steam reforming of methanol.•Cu2O-Ca2Fe2O5 was utilized as the catalytic oxygen carrier for CL-OSRM.•40CuCaFe shows the highest catalytic activity which performs a H2 production rate of 37.6 μmol·H2∙g−1·COC·s−1. Auto-thermal reforming of m...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied catalysis. B, Environmental Environmental, 2020-07, Vol.269, p.118758, Article 118758
Hauptverfasser: Sun, Zhao, Zhang, Xianhua, Li, Hongfang, Liu, Tao, Sang, Sier, Chen, Shiyi, Duan, Lunbo, Zeng, Liang, Xiang, Wenguo, Gong, Jinlong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 118758
container_title Applied catalysis. B, Environmental
container_volume 269
creator Sun, Zhao
Zhang, Xianhua
Li, Hongfang
Liu, Tao
Sang, Sier
Chen, Shiyi
Duan, Lunbo
Zeng, Liang
Xiang, Wenguo
Gong, Jinlong
description [Display omitted] •A new approach was proposed for oxidative steam reforming of methanol.•Cu2O-Ca2Fe2O5 was utilized as the catalytic oxygen carrier for CL-OSRM.•40CuCaFe shows the highest catalytic activity which performs a H2 production rate of 37.6 μmol·H2∙g−1·COC·s−1. Auto-thermal reforming of methanol is an attractive route for low-temperature methanol conversion for hydrogen production. This paper describes utilization the lattice oxygen of Cu2O/Ca2Fe2O5 participates the partial oxidation of methanol to achieve the efficient auto-thermal reforming of methanol. ASPEN Plus software was adopted to verify the feasibility of auto-thermal conversion of methanol via Cu↔Cu2O looping and provided a comprehensive understanding of the associated process via operating parameter optimization. A series of CuO/Ca2Fe2O5 with different contents of copper were prepared as the catalytic oxygen carrier (COC) which goes through the reduction → catalytic methanol conversion →re-oxidation. The surface and bulk properties of COCs were characterized by XRD, XPS, TEM-EDS mapping, Raman, and H2-TPR; the reaction pathways were investigated using CH3OH-pulse and in situ DRIFTS. Results indicate that 40 % Cu-loaded Cu2O-Ca2Fe2O5 shows the highest catalytic activity of the synthesized COCs, and the presence of Ca2Fe2O5 tunes the redox activity and mobility of the lattice oxygen, obtaining a H2 production rate of 37.6 μmol·H2∙g−1·COC·s−1 at 240 °C. The reaction pathways of chemical looping methanol conversion follow the sequence: CH3OH full oxidation → formaldehyde intermediate → methyl-formate intermediate as the amount of lattice oxygen decreases gradually.
doi_str_mv 10.1016/j.apcatb.2020.118758
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2438724722</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0926337320301739</els_id><sourcerecordid>2438724722</sourcerecordid><originalsourceid>FETCH-LOGICAL-c400t-42f75b7ce97c6b355bf7cd955ec2e94052ed5b10b6d317841d2783c9d30103073</originalsourceid><addsrcrecordid>eNp9kEtPwzAQhC0EEqXwDzhY4pziRxInHJCqipdUiQucLcfZEEdJHGy30H-PSzhzWml3ZlbzIXRNyYoSmt92KzVpFaoVIyyuaCGy4gQt4uQJLwp-ihakZHnCueDn6ML7jhDCOCsWSG1aGIxWPe6tncz4ge23qVUwe8A-gBqwg8a64ffS4AFCq0bb3-E1HuELTyq0X-qAowSrXbBJaMENMU3bcQ_OGzteorNG9R6u_uYSvT8-vG2ek-3r08tmvU10SkhIUtaIrBIaSqHzimdZ1Qhdl1kGmkGZkoxBnVWUVHnNqShSWjNRcF3WnFDCieBLdDPnTs5-7sAH2dmdG-NLyVJeCJYKxqIqnVXaWe9jNzk5Myh3kJTII0zZyRmmPMKUM8xou59tEBvsDTjptYFRQ20c6CBra_4P-AGnl39M</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2438724722</pqid></control><display><type>article</type><title>Chemical looping oxidative steam reforming of methanol: A new pathway for auto-thermal conversion</title><source>Elsevier ScienceDirect Journals</source><creator>Sun, Zhao ; Zhang, Xianhua ; Li, Hongfang ; Liu, Tao ; Sang, Sier ; Chen, Shiyi ; Duan, Lunbo ; Zeng, Liang ; Xiang, Wenguo ; Gong, Jinlong</creator><creatorcontrib>Sun, Zhao ; Zhang, Xianhua ; Li, Hongfang ; Liu, Tao ; Sang, Sier ; Chen, Shiyi ; Duan, Lunbo ; Zeng, Liang ; Xiang, Wenguo ; Gong, Jinlong</creatorcontrib><description>[Display omitted] •A new approach was proposed for oxidative steam reforming of methanol.•Cu2O-Ca2Fe2O5 was utilized as the catalytic oxygen carrier for CL-OSRM.•40CuCaFe shows the highest catalytic activity which performs a H2 production rate of 37.6 μmol·H2∙g−1·COC·s−1. Auto-thermal reforming of methanol is an attractive route for low-temperature methanol conversion for hydrogen production. This paper describes utilization the lattice oxygen of Cu2O/Ca2Fe2O5 participates the partial oxidation of methanol to achieve the efficient auto-thermal reforming of methanol. ASPEN Plus software was adopted to verify the feasibility of auto-thermal conversion of methanol via Cu↔Cu2O looping and provided a comprehensive understanding of the associated process via operating parameter optimization. A series of CuO/Ca2Fe2O5 with different contents of copper were prepared as the catalytic oxygen carrier (COC) which goes through the reduction → catalytic methanol conversion →re-oxidation. The surface and bulk properties of COCs were characterized by XRD, XPS, TEM-EDS mapping, Raman, and H2-TPR; the reaction pathways were investigated using CH3OH-pulse and in situ DRIFTS. Results indicate that 40 % Cu-loaded Cu2O-Ca2Fe2O5 shows the highest catalytic activity of the synthesized COCs, and the presence of Ca2Fe2O5 tunes the redox activity and mobility of the lattice oxygen, obtaining a H2 production rate of 37.6 μmol·H2∙g−1·COC·s−1 at 240 °C. The reaction pathways of chemical looping methanol conversion follow the sequence: CH3OH full oxidation → formaldehyde intermediate → methyl-formate intermediate as the amount of lattice oxygen decreases gradually.</description><identifier>ISSN: 0926-3373</identifier><identifier>EISSN: 1873-3883</identifier><identifier>DOI: 10.1016/j.apcatb.2020.118758</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Catalytic activity ; Catalytic converters ; Catalytic oxygen carrier ; Chemical looping ; Chemical synthesis ; Conversion ; Copper ; Copper oxides ; Hydrogen generation ; Hydrogen production ; Lattice oxygen ; Low temperature ; Mapping ; Methanol ; Methanol reforming ; Optimization ; Oxidation ; Oxygen ; Process parameters ; Reforming ; Steam ; X ray photoelectron spectroscopy</subject><ispartof>Applied catalysis. B, Environmental, 2020-07, Vol.269, p.118758, Article 118758</ispartof><rights>2020 Elsevier B.V.</rights><rights>Copyright Elsevier BV Jul 15, 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c400t-42f75b7ce97c6b355bf7cd955ec2e94052ed5b10b6d317841d2783c9d30103073</citedby><cites>FETCH-LOGICAL-c400t-42f75b7ce97c6b355bf7cd955ec2e94052ed5b10b6d317841d2783c9d30103073</cites><orcidid>0000-0001-7263-318X ; 0000-0001-9989-0936</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0926337320301739$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Sun, Zhao</creatorcontrib><creatorcontrib>Zhang, Xianhua</creatorcontrib><creatorcontrib>Li, Hongfang</creatorcontrib><creatorcontrib>Liu, Tao</creatorcontrib><creatorcontrib>Sang, Sier</creatorcontrib><creatorcontrib>Chen, Shiyi</creatorcontrib><creatorcontrib>Duan, Lunbo</creatorcontrib><creatorcontrib>Zeng, Liang</creatorcontrib><creatorcontrib>Xiang, Wenguo</creatorcontrib><creatorcontrib>Gong, Jinlong</creatorcontrib><title>Chemical looping oxidative steam reforming of methanol: A new pathway for auto-thermal conversion</title><title>Applied catalysis. B, Environmental</title><description>[Display omitted] •A new approach was proposed for oxidative steam reforming of methanol.•Cu2O-Ca2Fe2O5 was utilized as the catalytic oxygen carrier for CL-OSRM.•40CuCaFe shows the highest catalytic activity which performs a H2 production rate of 37.6 μmol·H2∙g−1·COC·s−1. Auto-thermal reforming of methanol is an attractive route for low-temperature methanol conversion for hydrogen production. This paper describes utilization the lattice oxygen of Cu2O/Ca2Fe2O5 participates the partial oxidation of methanol to achieve the efficient auto-thermal reforming of methanol. ASPEN Plus software was adopted to verify the feasibility of auto-thermal conversion of methanol via Cu↔Cu2O looping and provided a comprehensive understanding of the associated process via operating parameter optimization. A series of CuO/Ca2Fe2O5 with different contents of copper were prepared as the catalytic oxygen carrier (COC) which goes through the reduction → catalytic methanol conversion →re-oxidation. The surface and bulk properties of COCs were characterized by XRD, XPS, TEM-EDS mapping, Raman, and H2-TPR; the reaction pathways were investigated using CH3OH-pulse and in situ DRIFTS. Results indicate that 40 % Cu-loaded Cu2O-Ca2Fe2O5 shows the highest catalytic activity of the synthesized COCs, and the presence of Ca2Fe2O5 tunes the redox activity and mobility of the lattice oxygen, obtaining a H2 production rate of 37.6 μmol·H2∙g−1·COC·s−1 at 240 °C. The reaction pathways of chemical looping methanol conversion follow the sequence: CH3OH full oxidation → formaldehyde intermediate → methyl-formate intermediate as the amount of lattice oxygen decreases gradually.</description><subject>Catalytic activity</subject><subject>Catalytic converters</subject><subject>Catalytic oxygen carrier</subject><subject>Chemical looping</subject><subject>Chemical synthesis</subject><subject>Conversion</subject><subject>Copper</subject><subject>Copper oxides</subject><subject>Hydrogen generation</subject><subject>Hydrogen production</subject><subject>Lattice oxygen</subject><subject>Low temperature</subject><subject>Mapping</subject><subject>Methanol</subject><subject>Methanol reforming</subject><subject>Optimization</subject><subject>Oxidation</subject><subject>Oxygen</subject><subject>Process parameters</subject><subject>Reforming</subject><subject>Steam</subject><subject>X ray photoelectron spectroscopy</subject><issn>0926-3373</issn><issn>1873-3883</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kEtPwzAQhC0EEqXwDzhY4pziRxInHJCqipdUiQucLcfZEEdJHGy30H-PSzhzWml3ZlbzIXRNyYoSmt92KzVpFaoVIyyuaCGy4gQt4uQJLwp-ihakZHnCueDn6ML7jhDCOCsWSG1aGIxWPe6tncz4ge23qVUwe8A-gBqwg8a64ffS4AFCq0bb3-E1HuELTyq0X-qAowSrXbBJaMENMU3bcQ_OGzteorNG9R6u_uYSvT8-vG2ek-3r08tmvU10SkhIUtaIrBIaSqHzimdZ1Qhdl1kGmkGZkoxBnVWUVHnNqShSWjNRcF3WnFDCieBLdDPnTs5-7sAH2dmdG-NLyVJeCJYKxqIqnVXaWe9jNzk5Myh3kJTII0zZyRmmPMKUM8xou59tEBvsDTjptYFRQ20c6CBra_4P-AGnl39M</recordid><startdate>20200715</startdate><enddate>20200715</enddate><creator>Sun, Zhao</creator><creator>Zhang, Xianhua</creator><creator>Li, Hongfang</creator><creator>Liu, Tao</creator><creator>Sang, Sier</creator><creator>Chen, Shiyi</creator><creator>Duan, Lunbo</creator><creator>Zeng, Liang</creator><creator>Xiang, Wenguo</creator><creator>Gong, Jinlong</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7ST</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>JG9</scope><scope>KR7</scope><scope>L7M</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0001-7263-318X</orcidid><orcidid>https://orcid.org/0000-0001-9989-0936</orcidid></search><sort><creationdate>20200715</creationdate><title>Chemical looping oxidative steam reforming of methanol: A new pathway for auto-thermal conversion</title><author>Sun, Zhao ; Zhang, Xianhua ; Li, Hongfang ; Liu, Tao ; Sang, Sier ; Chen, Shiyi ; Duan, Lunbo ; Zeng, Liang ; Xiang, Wenguo ; Gong, Jinlong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c400t-42f75b7ce97c6b355bf7cd955ec2e94052ed5b10b6d317841d2783c9d30103073</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Catalytic activity</topic><topic>Catalytic converters</topic><topic>Catalytic oxygen carrier</topic><topic>Chemical looping</topic><topic>Chemical synthesis</topic><topic>Conversion</topic><topic>Copper</topic><topic>Copper oxides</topic><topic>Hydrogen generation</topic><topic>Hydrogen production</topic><topic>Lattice oxygen</topic><topic>Low temperature</topic><topic>Mapping</topic><topic>Methanol</topic><topic>Methanol reforming</topic><topic>Optimization</topic><topic>Oxidation</topic><topic>Oxygen</topic><topic>Process parameters</topic><topic>Reforming</topic><topic>Steam</topic><topic>X ray photoelectron spectroscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sun, Zhao</creatorcontrib><creatorcontrib>Zhang, Xianhua</creatorcontrib><creatorcontrib>Li, Hongfang</creatorcontrib><creatorcontrib>Liu, Tao</creatorcontrib><creatorcontrib>Sang, Sier</creatorcontrib><creatorcontrib>Chen, Shiyi</creatorcontrib><creatorcontrib>Duan, Lunbo</creatorcontrib><creatorcontrib>Zeng, Liang</creatorcontrib><creatorcontrib>Xiang, Wenguo</creatorcontrib><creatorcontrib>Gong, Jinlong</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Applied catalysis. B, Environmental</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sun, Zhao</au><au>Zhang, Xianhua</au><au>Li, Hongfang</au><au>Liu, Tao</au><au>Sang, Sier</au><au>Chen, Shiyi</au><au>Duan, Lunbo</au><au>Zeng, Liang</au><au>Xiang, Wenguo</au><au>Gong, Jinlong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Chemical looping oxidative steam reforming of methanol: A new pathway for auto-thermal conversion</atitle><jtitle>Applied catalysis. B, Environmental</jtitle><date>2020-07-15</date><risdate>2020</risdate><volume>269</volume><spage>118758</spage><pages>118758-</pages><artnum>118758</artnum><issn>0926-3373</issn><eissn>1873-3883</eissn><abstract>[Display omitted] •A new approach was proposed for oxidative steam reforming of methanol.•Cu2O-Ca2Fe2O5 was utilized as the catalytic oxygen carrier for CL-OSRM.•40CuCaFe shows the highest catalytic activity which performs a H2 production rate of 37.6 μmol·H2∙g−1·COC·s−1. Auto-thermal reforming of methanol is an attractive route for low-temperature methanol conversion for hydrogen production. This paper describes utilization the lattice oxygen of Cu2O/Ca2Fe2O5 participates the partial oxidation of methanol to achieve the efficient auto-thermal reforming of methanol. ASPEN Plus software was adopted to verify the feasibility of auto-thermal conversion of methanol via Cu↔Cu2O looping and provided a comprehensive understanding of the associated process via operating parameter optimization. A series of CuO/Ca2Fe2O5 with different contents of copper were prepared as the catalytic oxygen carrier (COC) which goes through the reduction → catalytic methanol conversion →re-oxidation. The surface and bulk properties of COCs were characterized by XRD, XPS, TEM-EDS mapping, Raman, and H2-TPR; the reaction pathways were investigated using CH3OH-pulse and in situ DRIFTS. Results indicate that 40 % Cu-loaded Cu2O-Ca2Fe2O5 shows the highest catalytic activity of the synthesized COCs, and the presence of Ca2Fe2O5 tunes the redox activity and mobility of the lattice oxygen, obtaining a H2 production rate of 37.6 μmol·H2∙g−1·COC·s−1 at 240 °C. The reaction pathways of chemical looping methanol conversion follow the sequence: CH3OH full oxidation → formaldehyde intermediate → methyl-formate intermediate as the amount of lattice oxygen decreases gradually.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.apcatb.2020.118758</doi><orcidid>https://orcid.org/0000-0001-7263-318X</orcidid><orcidid>https://orcid.org/0000-0001-9989-0936</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0926-3373
ispartof Applied catalysis. B, Environmental, 2020-07, Vol.269, p.118758, Article 118758
issn 0926-3373
1873-3883
language eng
recordid cdi_proquest_journals_2438724722
source Elsevier ScienceDirect Journals
subjects Catalytic activity
Catalytic converters
Catalytic oxygen carrier
Chemical looping
Chemical synthesis
Conversion
Copper
Copper oxides
Hydrogen generation
Hydrogen production
Lattice oxygen
Low temperature
Mapping
Methanol
Methanol reforming
Optimization
Oxidation
Oxygen
Process parameters
Reforming
Steam
X ray photoelectron spectroscopy
title Chemical looping oxidative steam reforming of methanol: A new pathway for auto-thermal conversion
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T23%3A15%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Chemical%20looping%20oxidative%20steam%20reforming%20of%20methanol:%20A%20new%20pathway%20for%20auto-thermal%20conversion&rft.jtitle=Applied%20catalysis.%20B,%20Environmental&rft.au=Sun,%20Zhao&rft.date=2020-07-15&rft.volume=269&rft.spage=118758&rft.pages=118758-&rft.artnum=118758&rft.issn=0926-3373&rft.eissn=1873-3883&rft_id=info:doi/10.1016/j.apcatb.2020.118758&rft_dat=%3Cproquest_cross%3E2438724722%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2438724722&rft_id=info:pmid/&rft_els_id=S0926337320301739&rfr_iscdi=true