Chemical looping oxidative steam reforming of methanol: A new pathway for auto-thermal conversion
[Display omitted] •A new approach was proposed for oxidative steam reforming of methanol.•Cu2O-Ca2Fe2O5 was utilized as the catalytic oxygen carrier for CL-OSRM.•40CuCaFe shows the highest catalytic activity which performs a H2 production rate of 37.6 μmol·H2∙g−1·COC·s−1. Auto-thermal reforming of m...
Gespeichert in:
Veröffentlicht in: | Applied catalysis. B, Environmental Environmental, 2020-07, Vol.269, p.118758, Article 118758 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 118758 |
container_title | Applied catalysis. B, Environmental |
container_volume | 269 |
creator | Sun, Zhao Zhang, Xianhua Li, Hongfang Liu, Tao Sang, Sier Chen, Shiyi Duan, Lunbo Zeng, Liang Xiang, Wenguo Gong, Jinlong |
description | [Display omitted]
•A new approach was proposed for oxidative steam reforming of methanol.•Cu2O-Ca2Fe2O5 was utilized as the catalytic oxygen carrier for CL-OSRM.•40CuCaFe shows the highest catalytic activity which performs a H2 production rate of 37.6 μmol·H2∙g−1·COC·s−1.
Auto-thermal reforming of methanol is an attractive route for low-temperature methanol conversion for hydrogen production. This paper describes utilization the lattice oxygen of Cu2O/Ca2Fe2O5 participates the partial oxidation of methanol to achieve the efficient auto-thermal reforming of methanol. ASPEN Plus software was adopted to verify the feasibility of auto-thermal conversion of methanol via Cu↔Cu2O looping and provided a comprehensive understanding of the associated process via operating parameter optimization. A series of CuO/Ca2Fe2O5 with different contents of copper were prepared as the catalytic oxygen carrier (COC) which goes through the reduction → catalytic methanol conversion →re-oxidation. The surface and bulk properties of COCs were characterized by XRD, XPS, TEM-EDS mapping, Raman, and H2-TPR; the reaction pathways were investigated using CH3OH-pulse and in situ DRIFTS. Results indicate that 40 % Cu-loaded Cu2O-Ca2Fe2O5 shows the highest catalytic activity of the synthesized COCs, and the presence of Ca2Fe2O5 tunes the redox activity and mobility of the lattice oxygen, obtaining a H2 production rate of 37.6 μmol·H2∙g−1·COC·s−1 at 240 °C. The reaction pathways of chemical looping methanol conversion follow the sequence: CH3OH full oxidation → formaldehyde intermediate → methyl-formate intermediate as the amount of lattice oxygen decreases gradually. |
doi_str_mv | 10.1016/j.apcatb.2020.118758 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2438724722</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0926337320301739</els_id><sourcerecordid>2438724722</sourcerecordid><originalsourceid>FETCH-LOGICAL-c400t-42f75b7ce97c6b355bf7cd955ec2e94052ed5b10b6d317841d2783c9d30103073</originalsourceid><addsrcrecordid>eNp9kEtPwzAQhC0EEqXwDzhY4pziRxInHJCqipdUiQucLcfZEEdJHGy30H-PSzhzWml3ZlbzIXRNyYoSmt92KzVpFaoVIyyuaCGy4gQt4uQJLwp-ihakZHnCueDn6ML7jhDCOCsWSG1aGIxWPe6tncz4ge23qVUwe8A-gBqwg8a64ffS4AFCq0bb3-E1HuELTyq0X-qAowSrXbBJaMENMU3bcQ_OGzteorNG9R6u_uYSvT8-vG2ek-3r08tmvU10SkhIUtaIrBIaSqHzimdZ1Qhdl1kGmkGZkoxBnVWUVHnNqShSWjNRcF3WnFDCieBLdDPnTs5-7sAH2dmdG-NLyVJeCJYKxqIqnVXaWe9jNzk5Myh3kJTII0zZyRmmPMKUM8xou59tEBvsDTjptYFRQ20c6CBra_4P-AGnl39M</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2438724722</pqid></control><display><type>article</type><title>Chemical looping oxidative steam reforming of methanol: A new pathway for auto-thermal conversion</title><source>Elsevier ScienceDirect Journals</source><creator>Sun, Zhao ; Zhang, Xianhua ; Li, Hongfang ; Liu, Tao ; Sang, Sier ; Chen, Shiyi ; Duan, Lunbo ; Zeng, Liang ; Xiang, Wenguo ; Gong, Jinlong</creator><creatorcontrib>Sun, Zhao ; Zhang, Xianhua ; Li, Hongfang ; Liu, Tao ; Sang, Sier ; Chen, Shiyi ; Duan, Lunbo ; Zeng, Liang ; Xiang, Wenguo ; Gong, Jinlong</creatorcontrib><description>[Display omitted]
•A new approach was proposed for oxidative steam reforming of methanol.•Cu2O-Ca2Fe2O5 was utilized as the catalytic oxygen carrier for CL-OSRM.•40CuCaFe shows the highest catalytic activity which performs a H2 production rate of 37.6 μmol·H2∙g−1·COC·s−1.
Auto-thermal reforming of methanol is an attractive route for low-temperature methanol conversion for hydrogen production. This paper describes utilization the lattice oxygen of Cu2O/Ca2Fe2O5 participates the partial oxidation of methanol to achieve the efficient auto-thermal reforming of methanol. ASPEN Plus software was adopted to verify the feasibility of auto-thermal conversion of methanol via Cu↔Cu2O looping and provided a comprehensive understanding of the associated process via operating parameter optimization. A series of CuO/Ca2Fe2O5 with different contents of copper were prepared as the catalytic oxygen carrier (COC) which goes through the reduction → catalytic methanol conversion →re-oxidation. The surface and bulk properties of COCs were characterized by XRD, XPS, TEM-EDS mapping, Raman, and H2-TPR; the reaction pathways were investigated using CH3OH-pulse and in situ DRIFTS. Results indicate that 40 % Cu-loaded Cu2O-Ca2Fe2O5 shows the highest catalytic activity of the synthesized COCs, and the presence of Ca2Fe2O5 tunes the redox activity and mobility of the lattice oxygen, obtaining a H2 production rate of 37.6 μmol·H2∙g−1·COC·s−1 at 240 °C. The reaction pathways of chemical looping methanol conversion follow the sequence: CH3OH full oxidation → formaldehyde intermediate → methyl-formate intermediate as the amount of lattice oxygen decreases gradually.</description><identifier>ISSN: 0926-3373</identifier><identifier>EISSN: 1873-3883</identifier><identifier>DOI: 10.1016/j.apcatb.2020.118758</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Catalytic activity ; Catalytic converters ; Catalytic oxygen carrier ; Chemical looping ; Chemical synthesis ; Conversion ; Copper ; Copper oxides ; Hydrogen generation ; Hydrogen production ; Lattice oxygen ; Low temperature ; Mapping ; Methanol ; Methanol reforming ; Optimization ; Oxidation ; Oxygen ; Process parameters ; Reforming ; Steam ; X ray photoelectron spectroscopy</subject><ispartof>Applied catalysis. B, Environmental, 2020-07, Vol.269, p.118758, Article 118758</ispartof><rights>2020 Elsevier B.V.</rights><rights>Copyright Elsevier BV Jul 15, 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c400t-42f75b7ce97c6b355bf7cd955ec2e94052ed5b10b6d317841d2783c9d30103073</citedby><cites>FETCH-LOGICAL-c400t-42f75b7ce97c6b355bf7cd955ec2e94052ed5b10b6d317841d2783c9d30103073</cites><orcidid>0000-0001-7263-318X ; 0000-0001-9989-0936</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0926337320301739$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Sun, Zhao</creatorcontrib><creatorcontrib>Zhang, Xianhua</creatorcontrib><creatorcontrib>Li, Hongfang</creatorcontrib><creatorcontrib>Liu, Tao</creatorcontrib><creatorcontrib>Sang, Sier</creatorcontrib><creatorcontrib>Chen, Shiyi</creatorcontrib><creatorcontrib>Duan, Lunbo</creatorcontrib><creatorcontrib>Zeng, Liang</creatorcontrib><creatorcontrib>Xiang, Wenguo</creatorcontrib><creatorcontrib>Gong, Jinlong</creatorcontrib><title>Chemical looping oxidative steam reforming of methanol: A new pathway for auto-thermal conversion</title><title>Applied catalysis. B, Environmental</title><description>[Display omitted]
•A new approach was proposed for oxidative steam reforming of methanol.•Cu2O-Ca2Fe2O5 was utilized as the catalytic oxygen carrier for CL-OSRM.•40CuCaFe shows the highest catalytic activity which performs a H2 production rate of 37.6 μmol·H2∙g−1·COC·s−1.
Auto-thermal reforming of methanol is an attractive route for low-temperature methanol conversion for hydrogen production. This paper describes utilization the lattice oxygen of Cu2O/Ca2Fe2O5 participates the partial oxidation of methanol to achieve the efficient auto-thermal reforming of methanol. ASPEN Plus software was adopted to verify the feasibility of auto-thermal conversion of methanol via Cu↔Cu2O looping and provided a comprehensive understanding of the associated process via operating parameter optimization. A series of CuO/Ca2Fe2O5 with different contents of copper were prepared as the catalytic oxygen carrier (COC) which goes through the reduction → catalytic methanol conversion →re-oxidation. The surface and bulk properties of COCs were characterized by XRD, XPS, TEM-EDS mapping, Raman, and H2-TPR; the reaction pathways were investigated using CH3OH-pulse and in situ DRIFTS. Results indicate that 40 % Cu-loaded Cu2O-Ca2Fe2O5 shows the highest catalytic activity of the synthesized COCs, and the presence of Ca2Fe2O5 tunes the redox activity and mobility of the lattice oxygen, obtaining a H2 production rate of 37.6 μmol·H2∙g−1·COC·s−1 at 240 °C. The reaction pathways of chemical looping methanol conversion follow the sequence: CH3OH full oxidation → formaldehyde intermediate → methyl-formate intermediate as the amount of lattice oxygen decreases gradually.</description><subject>Catalytic activity</subject><subject>Catalytic converters</subject><subject>Catalytic oxygen carrier</subject><subject>Chemical looping</subject><subject>Chemical synthesis</subject><subject>Conversion</subject><subject>Copper</subject><subject>Copper oxides</subject><subject>Hydrogen generation</subject><subject>Hydrogen production</subject><subject>Lattice oxygen</subject><subject>Low temperature</subject><subject>Mapping</subject><subject>Methanol</subject><subject>Methanol reforming</subject><subject>Optimization</subject><subject>Oxidation</subject><subject>Oxygen</subject><subject>Process parameters</subject><subject>Reforming</subject><subject>Steam</subject><subject>X ray photoelectron spectroscopy</subject><issn>0926-3373</issn><issn>1873-3883</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kEtPwzAQhC0EEqXwDzhY4pziRxInHJCqipdUiQucLcfZEEdJHGy30H-PSzhzWml3ZlbzIXRNyYoSmt92KzVpFaoVIyyuaCGy4gQt4uQJLwp-ihakZHnCueDn6ML7jhDCOCsWSG1aGIxWPe6tncz4ge23qVUwe8A-gBqwg8a64ffS4AFCq0bb3-E1HuELTyq0X-qAowSrXbBJaMENMU3bcQ_OGzteorNG9R6u_uYSvT8-vG2ek-3r08tmvU10SkhIUtaIrBIaSqHzimdZ1Qhdl1kGmkGZkoxBnVWUVHnNqShSWjNRcF3WnFDCieBLdDPnTs5-7sAH2dmdG-NLyVJeCJYKxqIqnVXaWe9jNzk5Myh3kJTII0zZyRmmPMKUM8xou59tEBvsDTjptYFRQ20c6CBra_4P-AGnl39M</recordid><startdate>20200715</startdate><enddate>20200715</enddate><creator>Sun, Zhao</creator><creator>Zhang, Xianhua</creator><creator>Li, Hongfang</creator><creator>Liu, Tao</creator><creator>Sang, Sier</creator><creator>Chen, Shiyi</creator><creator>Duan, Lunbo</creator><creator>Zeng, Liang</creator><creator>Xiang, Wenguo</creator><creator>Gong, Jinlong</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7ST</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>JG9</scope><scope>KR7</scope><scope>L7M</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0001-7263-318X</orcidid><orcidid>https://orcid.org/0000-0001-9989-0936</orcidid></search><sort><creationdate>20200715</creationdate><title>Chemical looping oxidative steam reforming of methanol: A new pathway for auto-thermal conversion</title><author>Sun, Zhao ; Zhang, Xianhua ; Li, Hongfang ; Liu, Tao ; Sang, Sier ; Chen, Shiyi ; Duan, Lunbo ; Zeng, Liang ; Xiang, Wenguo ; Gong, Jinlong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c400t-42f75b7ce97c6b355bf7cd955ec2e94052ed5b10b6d317841d2783c9d30103073</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Catalytic activity</topic><topic>Catalytic converters</topic><topic>Catalytic oxygen carrier</topic><topic>Chemical looping</topic><topic>Chemical synthesis</topic><topic>Conversion</topic><topic>Copper</topic><topic>Copper oxides</topic><topic>Hydrogen generation</topic><topic>Hydrogen production</topic><topic>Lattice oxygen</topic><topic>Low temperature</topic><topic>Mapping</topic><topic>Methanol</topic><topic>Methanol reforming</topic><topic>Optimization</topic><topic>Oxidation</topic><topic>Oxygen</topic><topic>Process parameters</topic><topic>Reforming</topic><topic>Steam</topic><topic>X ray photoelectron spectroscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sun, Zhao</creatorcontrib><creatorcontrib>Zhang, Xianhua</creatorcontrib><creatorcontrib>Li, Hongfang</creatorcontrib><creatorcontrib>Liu, Tao</creatorcontrib><creatorcontrib>Sang, Sier</creatorcontrib><creatorcontrib>Chen, Shiyi</creatorcontrib><creatorcontrib>Duan, Lunbo</creatorcontrib><creatorcontrib>Zeng, Liang</creatorcontrib><creatorcontrib>Xiang, Wenguo</creatorcontrib><creatorcontrib>Gong, Jinlong</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Applied catalysis. B, Environmental</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sun, Zhao</au><au>Zhang, Xianhua</au><au>Li, Hongfang</au><au>Liu, Tao</au><au>Sang, Sier</au><au>Chen, Shiyi</au><au>Duan, Lunbo</au><au>Zeng, Liang</au><au>Xiang, Wenguo</au><au>Gong, Jinlong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Chemical looping oxidative steam reforming of methanol: A new pathway for auto-thermal conversion</atitle><jtitle>Applied catalysis. B, Environmental</jtitle><date>2020-07-15</date><risdate>2020</risdate><volume>269</volume><spage>118758</spage><pages>118758-</pages><artnum>118758</artnum><issn>0926-3373</issn><eissn>1873-3883</eissn><abstract>[Display omitted]
•A new approach was proposed for oxidative steam reforming of methanol.•Cu2O-Ca2Fe2O5 was utilized as the catalytic oxygen carrier for CL-OSRM.•40CuCaFe shows the highest catalytic activity which performs a H2 production rate of 37.6 μmol·H2∙g−1·COC·s−1.
Auto-thermal reforming of methanol is an attractive route for low-temperature methanol conversion for hydrogen production. This paper describes utilization the lattice oxygen of Cu2O/Ca2Fe2O5 participates the partial oxidation of methanol to achieve the efficient auto-thermal reforming of methanol. ASPEN Plus software was adopted to verify the feasibility of auto-thermal conversion of methanol via Cu↔Cu2O looping and provided a comprehensive understanding of the associated process via operating parameter optimization. A series of CuO/Ca2Fe2O5 with different contents of copper were prepared as the catalytic oxygen carrier (COC) which goes through the reduction → catalytic methanol conversion →re-oxidation. The surface and bulk properties of COCs were characterized by XRD, XPS, TEM-EDS mapping, Raman, and H2-TPR; the reaction pathways were investigated using CH3OH-pulse and in situ DRIFTS. Results indicate that 40 % Cu-loaded Cu2O-Ca2Fe2O5 shows the highest catalytic activity of the synthesized COCs, and the presence of Ca2Fe2O5 tunes the redox activity and mobility of the lattice oxygen, obtaining a H2 production rate of 37.6 μmol·H2∙g−1·COC·s−1 at 240 °C. The reaction pathways of chemical looping methanol conversion follow the sequence: CH3OH full oxidation → formaldehyde intermediate → methyl-formate intermediate as the amount of lattice oxygen decreases gradually.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.apcatb.2020.118758</doi><orcidid>https://orcid.org/0000-0001-7263-318X</orcidid><orcidid>https://orcid.org/0000-0001-9989-0936</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0926-3373 |
ispartof | Applied catalysis. B, Environmental, 2020-07, Vol.269, p.118758, Article 118758 |
issn | 0926-3373 1873-3883 |
language | eng |
recordid | cdi_proquest_journals_2438724722 |
source | Elsevier ScienceDirect Journals |
subjects | Catalytic activity Catalytic converters Catalytic oxygen carrier Chemical looping Chemical synthesis Conversion Copper Copper oxides Hydrogen generation Hydrogen production Lattice oxygen Low temperature Mapping Methanol Methanol reforming Optimization Oxidation Oxygen Process parameters Reforming Steam X ray photoelectron spectroscopy |
title | Chemical looping oxidative steam reforming of methanol: A new pathway for auto-thermal conversion |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T23%3A15%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Chemical%20looping%20oxidative%20steam%20reforming%20of%20methanol:%20A%20new%20pathway%20for%20auto-thermal%20conversion&rft.jtitle=Applied%20catalysis.%20B,%20Environmental&rft.au=Sun,%20Zhao&rft.date=2020-07-15&rft.volume=269&rft.spage=118758&rft.pages=118758-&rft.artnum=118758&rft.issn=0926-3373&rft.eissn=1873-3883&rft_id=info:doi/10.1016/j.apcatb.2020.118758&rft_dat=%3Cproquest_cross%3E2438724722%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2438724722&rft_id=info:pmid/&rft_els_id=S0926337320301739&rfr_iscdi=true |