Low-sugar content betaxanthins extracts from yellow pitaya (Stenocereus pruinosus)

[Display omitted] •Low-sugar betaxanthin obtained from yellow pitaya by aqueous two-phase system (ATPS).•PEG1000-phosphates were more suitable than UCON-salts ATPS.•Tie line length, phase volume ratio and extract amount effects were significant.•Easy scale-up PEG1000-phosphates ATPS yields fractions...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Food and bioproducts processing 2020-05, Vol.121, p.178-185
Hauptverfasser: Sandate-Flores, Luisaldo, Rodríguez-Rodríguez, José, Velázquez, Gonzalo, Mayolo-Deloisa, Karla, Rito-Palomares, Marco, Torres, J. Antonio, Parra-Saldívar, Roberto
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 185
container_issue
container_start_page 178
container_title Food and bioproducts processing
container_volume 121
creator Sandate-Flores, Luisaldo
Rodríguez-Rodríguez, José
Velázquez, Gonzalo
Mayolo-Deloisa, Karla
Rito-Palomares, Marco
Torres, J. Antonio
Parra-Saldívar, Roberto
description [Display omitted] •Low-sugar betaxanthin obtained from yellow pitaya by aqueous two-phase system (ATPS).•PEG1000-phosphates were more suitable than UCON-salts ATPS.•Tie line length, phase volume ratio and extract amount effects were significant.•Easy scale-up PEG1000-phosphates ATPS yields fractions for food industry applications. Consumer preferences, and potential health risks associated with the consumption of synthetic food colors, explain the commercial interest in alternatives from natural sources. Betaxanthins from cactus fruit have been used to color food products, but sugars are not usually removed from these extracts leading to processing and formulation challenges. In this study, low-sugar betaxanthin preparations were obtained from a crude yellow pitaya Stenocereus pruinosus extract using aqueous two-phase systems (ATPS). This study focuses on the effect of the salts and polymer choice (polyethylene glycol (MW 1000; PEG1000) or polyalkylene glycol copolymer (MW 3930, UCON), tie line length (TLL), phase volume ratio (Vr), and crude extract percentage on the partitioning of betaxanthins and sugars in the crude extract. PEG1000-phosphates were more suitable than UCON-salts for the extraction of betaxanthin. Multivariate analysis of variance (MANOVA, α = 0.05) showed that TLL, Vr and crude extract concentration effects were statistically significant (P < 0.05). The correlation with Vr, crude extract concentration, and TLL was determined by multiple linear regression. The desirability function was used to identify an ATPS (TLL = 37.7 %, Vr = 0.3, and 7 % crude extract) yielding a top phase with minimum total sugar (2.8 %) and maximum betaxanthin content (52.3 %).
doi_str_mv 10.1016/j.fbp.2020.02.006
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2438723956</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0960308519304195</els_id><sourcerecordid>2438723956</sourcerecordid><originalsourceid>FETCH-LOGICAL-c325t-c609a6257ad71b97a663b8c90f291badc48b55381cd7ed8d29addeda09f0af423</originalsourceid><addsrcrecordid>eNp9kMtKxDAUQIMoOD4-wF3AjS5ab9ImbXAlgy8YEHysQ5qkmjLT1CR1Zv7eDuPa1d2cc-_lIHRBICdA-E2Xt82QU6CQA80B-AGakaoss4JV5BDNQHDICqjZMTqJsQMAUhM2Q68Lv87i-KkC1r5Ptk-4sUltVJ--XB-x3aSgdIq4DX6Ft3a59Gs8uKS2Cl-9TbzXNtgx4iGMrvdxjNdn6KhVy2jP_-Yp-ni4f58_ZYuXx-f53SLTBWUp0xyE4pRVylSkEZXivGhqLaClgjTK6LJuGCtqok1lTW2oUMZYo0C0oNqSFqfocr93CP57tDHJzo-hn05KWhZ1RQvB-ESRPaWDjzHYVg7BrVTYSgJyl052ckond-kkUDmlm5zbvWOn93-cDTJqZ3ttjQtWJ2m8-8f-BavoeB8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2438723956</pqid></control><display><type>article</type><title>Low-sugar content betaxanthins extracts from yellow pitaya (Stenocereus pruinosus)</title><source>ScienceDirect Freedom Collection (Elsevier)</source><creator>Sandate-Flores, Luisaldo ; Rodríguez-Rodríguez, José ; Velázquez, Gonzalo ; Mayolo-Deloisa, Karla ; Rito-Palomares, Marco ; Torres, J. Antonio ; Parra-Saldívar, Roberto</creator><creatorcontrib>Sandate-Flores, Luisaldo ; Rodríguez-Rodríguez, José ; Velázquez, Gonzalo ; Mayolo-Deloisa, Karla ; Rito-Palomares, Marco ; Torres, J. Antonio ; Parra-Saldívar, Roberto</creatorcontrib><description>[Display omitted] •Low-sugar betaxanthin obtained from yellow pitaya by aqueous two-phase system (ATPS).•PEG1000-phosphates were more suitable than UCON-salts ATPS.•Tie line length, phase volume ratio and extract amount effects were significant.•Easy scale-up PEG1000-phosphates ATPS yields fractions for food industry applications. Consumer preferences, and potential health risks associated with the consumption of synthetic food colors, explain the commercial interest in alternatives from natural sources. Betaxanthins from cactus fruit have been used to color food products, but sugars are not usually removed from these extracts leading to processing and formulation challenges. In this study, low-sugar betaxanthin preparations were obtained from a crude yellow pitaya Stenocereus pruinosus extract using aqueous two-phase systems (ATPS). This study focuses on the effect of the salts and polymer choice (polyethylene glycol (MW 1000; PEG1000) or polyalkylene glycol copolymer (MW 3930, UCON), tie line length (TLL), phase volume ratio (Vr), and crude extract percentage on the partitioning of betaxanthins and sugars in the crude extract. PEG1000-phosphates were more suitable than UCON-salts for the extraction of betaxanthin. Multivariate analysis of variance (MANOVA, α = 0.05) showed that TLL, Vr and crude extract concentration effects were statistically significant (P &lt; 0.05). The correlation with Vr, crude extract concentration, and TLL was determined by multiple linear regression. The desirability function was used to identify an ATPS (TLL = 37.7 %, Vr = 0.3, and 7 % crude extract) yielding a top phase with minimum total sugar (2.8 %) and maximum betaxanthin content (52.3 %).</description><identifier>ISSN: 0960-3085</identifier><identifier>EISSN: 1744-3571</identifier><identifier>DOI: 10.1016/j.fbp.2020.02.006</identifier><language>eng</language><publisher>Rugby: Elsevier B.V</publisher><subject>Aqueous two-phase systems (ATPS) ; Betaxanthins ; Binary systems ; Colour ; Copolymers ; Extraction processes ; Food consumption ; Food production ; Foods ; Health risks ; Multivariate analysis ; Phosphates ; Pitaya fruit (Stenocereus pruinosus) ; Polyethylene glycol ; Polymers ; Regression analysis ; Saccharides ; Salts ; Statistical analysis ; Stenocereus ; Sugar ; Sugars ; Synthetic food ; Tie line length (TLL) ; Variance analysis ; Volume ratio (Vr)</subject><ispartof>Food and bioproducts processing, 2020-05, Vol.121, p.178-185</ispartof><rights>2020 Institution of Chemical Engineers</rights><rights>Copyright Elsevier Science Ltd. May 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c325t-c609a6257ad71b97a663b8c90f291badc48b55381cd7ed8d29addeda09f0af423</citedby><cites>FETCH-LOGICAL-c325t-c609a6257ad71b97a663b8c90f291badc48b55381cd7ed8d29addeda09f0af423</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.fbp.2020.02.006$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Sandate-Flores, Luisaldo</creatorcontrib><creatorcontrib>Rodríguez-Rodríguez, José</creatorcontrib><creatorcontrib>Velázquez, Gonzalo</creatorcontrib><creatorcontrib>Mayolo-Deloisa, Karla</creatorcontrib><creatorcontrib>Rito-Palomares, Marco</creatorcontrib><creatorcontrib>Torres, J. Antonio</creatorcontrib><creatorcontrib>Parra-Saldívar, Roberto</creatorcontrib><title>Low-sugar content betaxanthins extracts from yellow pitaya (Stenocereus pruinosus)</title><title>Food and bioproducts processing</title><description>[Display omitted] •Low-sugar betaxanthin obtained from yellow pitaya by aqueous two-phase system (ATPS).•PEG1000-phosphates were more suitable than UCON-salts ATPS.•Tie line length, phase volume ratio and extract amount effects were significant.•Easy scale-up PEG1000-phosphates ATPS yields fractions for food industry applications. Consumer preferences, and potential health risks associated with the consumption of synthetic food colors, explain the commercial interest in alternatives from natural sources. Betaxanthins from cactus fruit have been used to color food products, but sugars are not usually removed from these extracts leading to processing and formulation challenges. In this study, low-sugar betaxanthin preparations were obtained from a crude yellow pitaya Stenocereus pruinosus extract using aqueous two-phase systems (ATPS). This study focuses on the effect of the salts and polymer choice (polyethylene glycol (MW 1000; PEG1000) or polyalkylene glycol copolymer (MW 3930, UCON), tie line length (TLL), phase volume ratio (Vr), and crude extract percentage on the partitioning of betaxanthins and sugars in the crude extract. PEG1000-phosphates were more suitable than UCON-salts for the extraction of betaxanthin. Multivariate analysis of variance (MANOVA, α = 0.05) showed that TLL, Vr and crude extract concentration effects were statistically significant (P &lt; 0.05). The correlation with Vr, crude extract concentration, and TLL was determined by multiple linear regression. The desirability function was used to identify an ATPS (TLL = 37.7 %, Vr = 0.3, and 7 % crude extract) yielding a top phase with minimum total sugar (2.8 %) and maximum betaxanthin content (52.3 %).</description><subject>Aqueous two-phase systems (ATPS)</subject><subject>Betaxanthins</subject><subject>Binary systems</subject><subject>Colour</subject><subject>Copolymers</subject><subject>Extraction processes</subject><subject>Food consumption</subject><subject>Food production</subject><subject>Foods</subject><subject>Health risks</subject><subject>Multivariate analysis</subject><subject>Phosphates</subject><subject>Pitaya fruit (Stenocereus pruinosus)</subject><subject>Polyethylene glycol</subject><subject>Polymers</subject><subject>Regression analysis</subject><subject>Saccharides</subject><subject>Salts</subject><subject>Statistical analysis</subject><subject>Stenocereus</subject><subject>Sugar</subject><subject>Sugars</subject><subject>Synthetic food</subject><subject>Tie line length (TLL)</subject><subject>Variance analysis</subject><subject>Volume ratio (Vr)</subject><issn>0960-3085</issn><issn>1744-3571</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kMtKxDAUQIMoOD4-wF3AjS5ab9ImbXAlgy8YEHysQ5qkmjLT1CR1Zv7eDuPa1d2cc-_lIHRBICdA-E2Xt82QU6CQA80B-AGakaoss4JV5BDNQHDICqjZMTqJsQMAUhM2Q68Lv87i-KkC1r5Ptk-4sUltVJ--XB-x3aSgdIq4DX6Ft3a59Gs8uKS2Cl-9TbzXNtgx4iGMrvdxjNdn6KhVy2jP_-Yp-ni4f58_ZYuXx-f53SLTBWUp0xyE4pRVylSkEZXivGhqLaClgjTK6LJuGCtqok1lTW2oUMZYo0C0oNqSFqfocr93CP57tDHJzo-hn05KWhZ1RQvB-ESRPaWDjzHYVg7BrVTYSgJyl052ckond-kkUDmlm5zbvWOn93-cDTJqZ3ttjQtWJ2m8-8f-BavoeB8</recordid><startdate>202005</startdate><enddate>202005</enddate><creator>Sandate-Flores, Luisaldo</creator><creator>Rodríguez-Rodríguez, José</creator><creator>Velázquez, Gonzalo</creator><creator>Mayolo-Deloisa, Karla</creator><creator>Rito-Palomares, Marco</creator><creator>Torres, J. Antonio</creator><creator>Parra-Saldívar, Roberto</creator><general>Elsevier B.V</general><general>Elsevier Science Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>7T7</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H98</scope><scope>L.G</scope><scope>P64</scope><scope>SOI</scope></search><sort><creationdate>202005</creationdate><title>Low-sugar content betaxanthins extracts from yellow pitaya (Stenocereus pruinosus)</title><author>Sandate-Flores, Luisaldo ; Rodríguez-Rodríguez, José ; Velázquez, Gonzalo ; Mayolo-Deloisa, Karla ; Rito-Palomares, Marco ; Torres, J. Antonio ; Parra-Saldívar, Roberto</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c325t-c609a6257ad71b97a663b8c90f291badc48b55381cd7ed8d29addeda09f0af423</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Aqueous two-phase systems (ATPS)</topic><topic>Betaxanthins</topic><topic>Binary systems</topic><topic>Colour</topic><topic>Copolymers</topic><topic>Extraction processes</topic><topic>Food consumption</topic><topic>Food production</topic><topic>Foods</topic><topic>Health risks</topic><topic>Multivariate analysis</topic><topic>Phosphates</topic><topic>Pitaya fruit (Stenocereus pruinosus)</topic><topic>Polyethylene glycol</topic><topic>Polymers</topic><topic>Regression analysis</topic><topic>Saccharides</topic><topic>Salts</topic><topic>Statistical analysis</topic><topic>Stenocereus</topic><topic>Sugar</topic><topic>Sugars</topic><topic>Synthetic food</topic><topic>Tie line length (TLL)</topic><topic>Variance analysis</topic><topic>Volume ratio (Vr)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sandate-Flores, Luisaldo</creatorcontrib><creatorcontrib>Rodríguez-Rodríguez, José</creatorcontrib><creatorcontrib>Velázquez, Gonzalo</creatorcontrib><creatorcontrib>Mayolo-Deloisa, Karla</creatorcontrib><creatorcontrib>Rito-Palomares, Marco</creatorcontrib><creatorcontrib>Torres, J. Antonio</creatorcontrib><creatorcontrib>Parra-Saldívar, Roberto</creatorcontrib><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Aquaculture Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environment Abstracts</collection><jtitle>Food and bioproducts processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sandate-Flores, Luisaldo</au><au>Rodríguez-Rodríguez, José</au><au>Velázquez, Gonzalo</au><au>Mayolo-Deloisa, Karla</au><au>Rito-Palomares, Marco</au><au>Torres, J. Antonio</au><au>Parra-Saldívar, Roberto</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Low-sugar content betaxanthins extracts from yellow pitaya (Stenocereus pruinosus)</atitle><jtitle>Food and bioproducts processing</jtitle><date>2020-05</date><risdate>2020</risdate><volume>121</volume><spage>178</spage><epage>185</epage><pages>178-185</pages><issn>0960-3085</issn><eissn>1744-3571</eissn><abstract>[Display omitted] •Low-sugar betaxanthin obtained from yellow pitaya by aqueous two-phase system (ATPS).•PEG1000-phosphates were more suitable than UCON-salts ATPS.•Tie line length, phase volume ratio and extract amount effects were significant.•Easy scale-up PEG1000-phosphates ATPS yields fractions for food industry applications. Consumer preferences, and potential health risks associated with the consumption of synthetic food colors, explain the commercial interest in alternatives from natural sources. Betaxanthins from cactus fruit have been used to color food products, but sugars are not usually removed from these extracts leading to processing and formulation challenges. In this study, low-sugar betaxanthin preparations were obtained from a crude yellow pitaya Stenocereus pruinosus extract using aqueous two-phase systems (ATPS). This study focuses on the effect of the salts and polymer choice (polyethylene glycol (MW 1000; PEG1000) or polyalkylene glycol copolymer (MW 3930, UCON), tie line length (TLL), phase volume ratio (Vr), and crude extract percentage on the partitioning of betaxanthins and sugars in the crude extract. PEG1000-phosphates were more suitable than UCON-salts for the extraction of betaxanthin. Multivariate analysis of variance (MANOVA, α = 0.05) showed that TLL, Vr and crude extract concentration effects were statistically significant (P &lt; 0.05). The correlation with Vr, crude extract concentration, and TLL was determined by multiple linear regression. The desirability function was used to identify an ATPS (TLL = 37.7 %, Vr = 0.3, and 7 % crude extract) yielding a top phase with minimum total sugar (2.8 %) and maximum betaxanthin content (52.3 %).</abstract><cop>Rugby</cop><pub>Elsevier B.V</pub><doi>10.1016/j.fbp.2020.02.006</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0960-3085
ispartof Food and bioproducts processing, 2020-05, Vol.121, p.178-185
issn 0960-3085
1744-3571
language eng
recordid cdi_proquest_journals_2438723956
source ScienceDirect Freedom Collection (Elsevier)
subjects Aqueous two-phase systems (ATPS)
Betaxanthins
Binary systems
Colour
Copolymers
Extraction processes
Food consumption
Food production
Foods
Health risks
Multivariate analysis
Phosphates
Pitaya fruit (Stenocereus pruinosus)
Polyethylene glycol
Polymers
Regression analysis
Saccharides
Salts
Statistical analysis
Stenocereus
Sugar
Sugars
Synthetic food
Tie line length (TLL)
Variance analysis
Volume ratio (Vr)
title Low-sugar content betaxanthins extracts from yellow pitaya (Stenocereus pruinosus)
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T05%3A06%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Low-sugar%20content%20betaxanthins%20extracts%20from%20yellow%20pitaya%20(Stenocereus%20pruinosus)&rft.jtitle=Food%20and%20bioproducts%20processing&rft.au=Sandate-Flores,%20Luisaldo&rft.date=2020-05&rft.volume=121&rft.spage=178&rft.epage=185&rft.pages=178-185&rft.issn=0960-3085&rft.eissn=1744-3571&rft_id=info:doi/10.1016/j.fbp.2020.02.006&rft_dat=%3Cproquest_cross%3E2438723956%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2438723956&rft_id=info:pmid/&rft_els_id=S0960308519304195&rfr_iscdi=true