Low-sugar content betaxanthins extracts from yellow pitaya (Stenocereus pruinosus)
[Display omitted] •Low-sugar betaxanthin obtained from yellow pitaya by aqueous two-phase system (ATPS).•PEG1000-phosphates were more suitable than UCON-salts ATPS.•Tie line length, phase volume ratio and extract amount effects were significant.•Easy scale-up PEG1000-phosphates ATPS yields fractions...
Gespeichert in:
Veröffentlicht in: | Food and bioproducts processing 2020-05, Vol.121, p.178-185 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 185 |
---|---|
container_issue | |
container_start_page | 178 |
container_title | Food and bioproducts processing |
container_volume | 121 |
creator | Sandate-Flores, Luisaldo Rodríguez-Rodríguez, José Velázquez, Gonzalo Mayolo-Deloisa, Karla Rito-Palomares, Marco Torres, J. Antonio Parra-Saldívar, Roberto |
description | [Display omitted]
•Low-sugar betaxanthin obtained from yellow pitaya by aqueous two-phase system (ATPS).•PEG1000-phosphates were more suitable than UCON-salts ATPS.•Tie line length, phase volume ratio and extract amount effects were significant.•Easy scale-up PEG1000-phosphates ATPS yields fractions for food industry applications.
Consumer preferences, and potential health risks associated with the consumption of synthetic food colors, explain the commercial interest in alternatives from natural sources. Betaxanthins from cactus fruit have been used to color food products, but sugars are not usually removed from these extracts leading to processing and formulation challenges. In this study, low-sugar betaxanthin preparations were obtained from a crude yellow pitaya Stenocereus pruinosus extract using aqueous two-phase systems (ATPS). This study focuses on the effect of the salts and polymer choice (polyethylene glycol (MW 1000; PEG1000) or polyalkylene glycol copolymer (MW 3930, UCON), tie line length (TLL), phase volume ratio (Vr), and crude extract percentage on the partitioning of betaxanthins and sugars in the crude extract. PEG1000-phosphates were more suitable than UCON-salts for the extraction of betaxanthin. Multivariate analysis of variance (MANOVA, α = 0.05) showed that TLL, Vr and crude extract concentration effects were statistically significant (P < 0.05). The correlation with Vr, crude extract concentration, and TLL was determined by multiple linear regression. The desirability function was used to identify an ATPS (TLL = 37.7 %, Vr = 0.3, and 7 % crude extract) yielding a top phase with minimum total sugar (2.8 %) and maximum betaxanthin content (52.3 %). |
doi_str_mv | 10.1016/j.fbp.2020.02.006 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2438723956</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0960308519304195</els_id><sourcerecordid>2438723956</sourcerecordid><originalsourceid>FETCH-LOGICAL-c325t-c609a6257ad71b97a663b8c90f291badc48b55381cd7ed8d29addeda09f0af423</originalsourceid><addsrcrecordid>eNp9kMtKxDAUQIMoOD4-wF3AjS5ab9ImbXAlgy8YEHysQ5qkmjLT1CR1Zv7eDuPa1d2cc-_lIHRBICdA-E2Xt82QU6CQA80B-AGakaoss4JV5BDNQHDICqjZMTqJsQMAUhM2Q68Lv87i-KkC1r5Ptk-4sUltVJ--XB-x3aSgdIq4DX6Ft3a59Gs8uKS2Cl-9TbzXNtgx4iGMrvdxjNdn6KhVy2jP_-Yp-ni4f58_ZYuXx-f53SLTBWUp0xyE4pRVylSkEZXivGhqLaClgjTK6LJuGCtqok1lTW2oUMZYo0C0oNqSFqfocr93CP57tDHJzo-hn05KWhZ1RQvB-ESRPaWDjzHYVg7BrVTYSgJyl052ckond-kkUDmlm5zbvWOn93-cDTJqZ3ttjQtWJ2m8-8f-BavoeB8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2438723956</pqid></control><display><type>article</type><title>Low-sugar content betaxanthins extracts from yellow pitaya (Stenocereus pruinosus)</title><source>ScienceDirect Freedom Collection (Elsevier)</source><creator>Sandate-Flores, Luisaldo ; Rodríguez-Rodríguez, José ; Velázquez, Gonzalo ; Mayolo-Deloisa, Karla ; Rito-Palomares, Marco ; Torres, J. Antonio ; Parra-Saldívar, Roberto</creator><creatorcontrib>Sandate-Flores, Luisaldo ; Rodríguez-Rodríguez, José ; Velázquez, Gonzalo ; Mayolo-Deloisa, Karla ; Rito-Palomares, Marco ; Torres, J. Antonio ; Parra-Saldívar, Roberto</creatorcontrib><description>[Display omitted]
•Low-sugar betaxanthin obtained from yellow pitaya by aqueous two-phase system (ATPS).•PEG1000-phosphates were more suitable than UCON-salts ATPS.•Tie line length, phase volume ratio and extract amount effects were significant.•Easy scale-up PEG1000-phosphates ATPS yields fractions for food industry applications.
Consumer preferences, and potential health risks associated with the consumption of synthetic food colors, explain the commercial interest in alternatives from natural sources. Betaxanthins from cactus fruit have been used to color food products, but sugars are not usually removed from these extracts leading to processing and formulation challenges. In this study, low-sugar betaxanthin preparations were obtained from a crude yellow pitaya Stenocereus pruinosus extract using aqueous two-phase systems (ATPS). This study focuses on the effect of the salts and polymer choice (polyethylene glycol (MW 1000; PEG1000) or polyalkylene glycol copolymer (MW 3930, UCON), tie line length (TLL), phase volume ratio (Vr), and crude extract percentage on the partitioning of betaxanthins and sugars in the crude extract. PEG1000-phosphates were more suitable than UCON-salts for the extraction of betaxanthin. Multivariate analysis of variance (MANOVA, α = 0.05) showed that TLL, Vr and crude extract concentration effects were statistically significant (P < 0.05). The correlation with Vr, crude extract concentration, and TLL was determined by multiple linear regression. The desirability function was used to identify an ATPS (TLL = 37.7 %, Vr = 0.3, and 7 % crude extract) yielding a top phase with minimum total sugar (2.8 %) and maximum betaxanthin content (52.3 %).</description><identifier>ISSN: 0960-3085</identifier><identifier>EISSN: 1744-3571</identifier><identifier>DOI: 10.1016/j.fbp.2020.02.006</identifier><language>eng</language><publisher>Rugby: Elsevier B.V</publisher><subject>Aqueous two-phase systems (ATPS) ; Betaxanthins ; Binary systems ; Colour ; Copolymers ; Extraction processes ; Food consumption ; Food production ; Foods ; Health risks ; Multivariate analysis ; Phosphates ; Pitaya fruit (Stenocereus pruinosus) ; Polyethylene glycol ; Polymers ; Regression analysis ; Saccharides ; Salts ; Statistical analysis ; Stenocereus ; Sugar ; Sugars ; Synthetic food ; Tie line length (TLL) ; Variance analysis ; Volume ratio (Vr)</subject><ispartof>Food and bioproducts processing, 2020-05, Vol.121, p.178-185</ispartof><rights>2020 Institution of Chemical Engineers</rights><rights>Copyright Elsevier Science Ltd. May 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c325t-c609a6257ad71b97a663b8c90f291badc48b55381cd7ed8d29addeda09f0af423</citedby><cites>FETCH-LOGICAL-c325t-c609a6257ad71b97a663b8c90f291badc48b55381cd7ed8d29addeda09f0af423</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.fbp.2020.02.006$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Sandate-Flores, Luisaldo</creatorcontrib><creatorcontrib>Rodríguez-Rodríguez, José</creatorcontrib><creatorcontrib>Velázquez, Gonzalo</creatorcontrib><creatorcontrib>Mayolo-Deloisa, Karla</creatorcontrib><creatorcontrib>Rito-Palomares, Marco</creatorcontrib><creatorcontrib>Torres, J. Antonio</creatorcontrib><creatorcontrib>Parra-Saldívar, Roberto</creatorcontrib><title>Low-sugar content betaxanthins extracts from yellow pitaya (Stenocereus pruinosus)</title><title>Food and bioproducts processing</title><description>[Display omitted]
•Low-sugar betaxanthin obtained from yellow pitaya by aqueous two-phase system (ATPS).•PEG1000-phosphates were more suitable than UCON-salts ATPS.•Tie line length, phase volume ratio and extract amount effects were significant.•Easy scale-up PEG1000-phosphates ATPS yields fractions for food industry applications.
Consumer preferences, and potential health risks associated with the consumption of synthetic food colors, explain the commercial interest in alternatives from natural sources. Betaxanthins from cactus fruit have been used to color food products, but sugars are not usually removed from these extracts leading to processing and formulation challenges. In this study, low-sugar betaxanthin preparations were obtained from a crude yellow pitaya Stenocereus pruinosus extract using aqueous two-phase systems (ATPS). This study focuses on the effect of the salts and polymer choice (polyethylene glycol (MW 1000; PEG1000) or polyalkylene glycol copolymer (MW 3930, UCON), tie line length (TLL), phase volume ratio (Vr), and crude extract percentage on the partitioning of betaxanthins and sugars in the crude extract. PEG1000-phosphates were more suitable than UCON-salts for the extraction of betaxanthin. Multivariate analysis of variance (MANOVA, α = 0.05) showed that TLL, Vr and crude extract concentration effects were statistically significant (P < 0.05). The correlation with Vr, crude extract concentration, and TLL was determined by multiple linear regression. The desirability function was used to identify an ATPS (TLL = 37.7 %, Vr = 0.3, and 7 % crude extract) yielding a top phase with minimum total sugar (2.8 %) and maximum betaxanthin content (52.3 %).</description><subject>Aqueous two-phase systems (ATPS)</subject><subject>Betaxanthins</subject><subject>Binary systems</subject><subject>Colour</subject><subject>Copolymers</subject><subject>Extraction processes</subject><subject>Food consumption</subject><subject>Food production</subject><subject>Foods</subject><subject>Health risks</subject><subject>Multivariate analysis</subject><subject>Phosphates</subject><subject>Pitaya fruit (Stenocereus pruinosus)</subject><subject>Polyethylene glycol</subject><subject>Polymers</subject><subject>Regression analysis</subject><subject>Saccharides</subject><subject>Salts</subject><subject>Statistical analysis</subject><subject>Stenocereus</subject><subject>Sugar</subject><subject>Sugars</subject><subject>Synthetic food</subject><subject>Tie line length (TLL)</subject><subject>Variance analysis</subject><subject>Volume ratio (Vr)</subject><issn>0960-3085</issn><issn>1744-3571</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kMtKxDAUQIMoOD4-wF3AjS5ab9ImbXAlgy8YEHysQ5qkmjLT1CR1Zv7eDuPa1d2cc-_lIHRBICdA-E2Xt82QU6CQA80B-AGakaoss4JV5BDNQHDICqjZMTqJsQMAUhM2Q68Lv87i-KkC1r5Ptk-4sUltVJ--XB-x3aSgdIq4DX6Ft3a59Gs8uKS2Cl-9TbzXNtgx4iGMrvdxjNdn6KhVy2jP_-Yp-ni4f58_ZYuXx-f53SLTBWUp0xyE4pRVylSkEZXivGhqLaClgjTK6LJuGCtqok1lTW2oUMZYo0C0oNqSFqfocr93CP57tDHJzo-hn05KWhZ1RQvB-ESRPaWDjzHYVg7BrVTYSgJyl052ckond-kkUDmlm5zbvWOn93-cDTJqZ3ttjQtWJ2m8-8f-BavoeB8</recordid><startdate>202005</startdate><enddate>202005</enddate><creator>Sandate-Flores, Luisaldo</creator><creator>Rodríguez-Rodríguez, José</creator><creator>Velázquez, Gonzalo</creator><creator>Mayolo-Deloisa, Karla</creator><creator>Rito-Palomares, Marco</creator><creator>Torres, J. Antonio</creator><creator>Parra-Saldívar, Roberto</creator><general>Elsevier B.V</general><general>Elsevier Science Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>7T7</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H98</scope><scope>L.G</scope><scope>P64</scope><scope>SOI</scope></search><sort><creationdate>202005</creationdate><title>Low-sugar content betaxanthins extracts from yellow pitaya (Stenocereus pruinosus)</title><author>Sandate-Flores, Luisaldo ; Rodríguez-Rodríguez, José ; Velázquez, Gonzalo ; Mayolo-Deloisa, Karla ; Rito-Palomares, Marco ; Torres, J. Antonio ; Parra-Saldívar, Roberto</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c325t-c609a6257ad71b97a663b8c90f291badc48b55381cd7ed8d29addeda09f0af423</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Aqueous two-phase systems (ATPS)</topic><topic>Betaxanthins</topic><topic>Binary systems</topic><topic>Colour</topic><topic>Copolymers</topic><topic>Extraction processes</topic><topic>Food consumption</topic><topic>Food production</topic><topic>Foods</topic><topic>Health risks</topic><topic>Multivariate analysis</topic><topic>Phosphates</topic><topic>Pitaya fruit (Stenocereus pruinosus)</topic><topic>Polyethylene glycol</topic><topic>Polymers</topic><topic>Regression analysis</topic><topic>Saccharides</topic><topic>Salts</topic><topic>Statistical analysis</topic><topic>Stenocereus</topic><topic>Sugar</topic><topic>Sugars</topic><topic>Synthetic food</topic><topic>Tie line length (TLL)</topic><topic>Variance analysis</topic><topic>Volume ratio (Vr)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sandate-Flores, Luisaldo</creatorcontrib><creatorcontrib>Rodríguez-Rodríguez, José</creatorcontrib><creatorcontrib>Velázquez, Gonzalo</creatorcontrib><creatorcontrib>Mayolo-Deloisa, Karla</creatorcontrib><creatorcontrib>Rito-Palomares, Marco</creatorcontrib><creatorcontrib>Torres, J. Antonio</creatorcontrib><creatorcontrib>Parra-Saldívar, Roberto</creatorcontrib><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Aquaculture Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environment Abstracts</collection><jtitle>Food and bioproducts processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sandate-Flores, Luisaldo</au><au>Rodríguez-Rodríguez, José</au><au>Velázquez, Gonzalo</au><au>Mayolo-Deloisa, Karla</au><au>Rito-Palomares, Marco</au><au>Torres, J. Antonio</au><au>Parra-Saldívar, Roberto</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Low-sugar content betaxanthins extracts from yellow pitaya (Stenocereus pruinosus)</atitle><jtitle>Food and bioproducts processing</jtitle><date>2020-05</date><risdate>2020</risdate><volume>121</volume><spage>178</spage><epage>185</epage><pages>178-185</pages><issn>0960-3085</issn><eissn>1744-3571</eissn><abstract>[Display omitted]
•Low-sugar betaxanthin obtained from yellow pitaya by aqueous two-phase system (ATPS).•PEG1000-phosphates were more suitable than UCON-salts ATPS.•Tie line length, phase volume ratio and extract amount effects were significant.•Easy scale-up PEG1000-phosphates ATPS yields fractions for food industry applications.
Consumer preferences, and potential health risks associated with the consumption of synthetic food colors, explain the commercial interest in alternatives from natural sources. Betaxanthins from cactus fruit have been used to color food products, but sugars are not usually removed from these extracts leading to processing and formulation challenges. In this study, low-sugar betaxanthin preparations were obtained from a crude yellow pitaya Stenocereus pruinosus extract using aqueous two-phase systems (ATPS). This study focuses on the effect of the salts and polymer choice (polyethylene glycol (MW 1000; PEG1000) or polyalkylene glycol copolymer (MW 3930, UCON), tie line length (TLL), phase volume ratio (Vr), and crude extract percentage on the partitioning of betaxanthins and sugars in the crude extract. PEG1000-phosphates were more suitable than UCON-salts for the extraction of betaxanthin. Multivariate analysis of variance (MANOVA, α = 0.05) showed that TLL, Vr and crude extract concentration effects were statistically significant (P < 0.05). The correlation with Vr, crude extract concentration, and TLL was determined by multiple linear regression. The desirability function was used to identify an ATPS (TLL = 37.7 %, Vr = 0.3, and 7 % crude extract) yielding a top phase with minimum total sugar (2.8 %) and maximum betaxanthin content (52.3 %).</abstract><cop>Rugby</cop><pub>Elsevier B.V</pub><doi>10.1016/j.fbp.2020.02.006</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0960-3085 |
ispartof | Food and bioproducts processing, 2020-05, Vol.121, p.178-185 |
issn | 0960-3085 1744-3571 |
language | eng |
recordid | cdi_proquest_journals_2438723956 |
source | ScienceDirect Freedom Collection (Elsevier) |
subjects | Aqueous two-phase systems (ATPS) Betaxanthins Binary systems Colour Copolymers Extraction processes Food consumption Food production Foods Health risks Multivariate analysis Phosphates Pitaya fruit (Stenocereus pruinosus) Polyethylene glycol Polymers Regression analysis Saccharides Salts Statistical analysis Stenocereus Sugar Sugars Synthetic food Tie line length (TLL) Variance analysis Volume ratio (Vr) |
title | Low-sugar content betaxanthins extracts from yellow pitaya (Stenocereus pruinosus) |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T05%3A06%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Low-sugar%20content%20betaxanthins%20extracts%20from%20yellow%20pitaya%20(Stenocereus%20pruinosus)&rft.jtitle=Food%20and%20bioproducts%20processing&rft.au=Sandate-Flores,%20Luisaldo&rft.date=2020-05&rft.volume=121&rft.spage=178&rft.epage=185&rft.pages=178-185&rft.issn=0960-3085&rft.eissn=1744-3571&rft_id=info:doi/10.1016/j.fbp.2020.02.006&rft_dat=%3Cproquest_cross%3E2438723956%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2438723956&rft_id=info:pmid/&rft_els_id=S0960308519304195&rfr_iscdi=true |