Tin modification of sodium manganese hexacyanoferrate as a superior cathode material for sodium ion batteries
Tin modified sodium manganese hexacyanoferrate, as a Prussian blue analogue, is studied as a cathode material for sodium ion batteries. By co-precipitation of Sn4+ during the synthesis process, the modified sodium manganese hexacyanoferrate materials crystallize with face-centered cubic structure wi...
Gespeichert in:
Veröffentlicht in: | Electrochimica acta 2020-05, Vol.342, p.135928, Article 135928 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 135928 |
container_title | Electrochimica acta |
container_volume | 342 |
creator | Li, Jinke He, Xin Ostendorp, Stefan Zhang, Li Hou, Xu Zhou, Dong Yan, Bo Meira, Debora Motta Yang, Yang Jia, Hao Schumacher, Gerhard Wang, Jun Paillard, Elie Wilde, Gerhard Winter, Martin Li, Jie |
description | Tin modified sodium manganese hexacyanoferrate, as a Prussian blue analogue, is studied as a cathode material for sodium ion batteries. By co-precipitation of Sn4+ during the synthesis process, the modified sodium manganese hexacyanoferrate materials crystallize with face-centered cubic structure with space group Fm3¯m, while the unmodified one possesses a rhombohedral structure with space group R3¯m. Compared to the unmodified material, the modified materials exhibit smaller particles with rougher surface, showing improved rate capability and cycling stability. The material modified by 10% Sn maintains 80.5% capacity after 100 cycles at 2 C (240 mA g−1) and delivers 53.4 mA h g−1 at 20 C. Both Fe and Mn take part in the redox reaction and the structural changes are reversible upon the initial Na+ extraction and insertion for both pristine and modified samples. For long-term cycling, the modified materials undergo less structural transformation than the pristine material that may lead to a better structural stability, and furthermore to enhanced cycling performance. |
doi_str_mv | 10.1016/j.electacta.2020.135928 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2438723742</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0013468620303200</els_id><sourcerecordid>2438723742</sourcerecordid><originalsourceid>FETCH-LOGICAL-c343t-6214d6c0f17a37b8084912ec82804c309b9612e156b8f9c78a0e17370d08c09a3</originalsourceid><addsrcrecordid>eNqFUMtqwzAQFKWFpmm_oYKena4kx5KPIfQFgV7Ss5DldSMTW6lkl-bvq-DQa2Fh2dmZWXYIuWewYMCKx3aBe7SDSbXgwBMqliVXF2TGlBSZUMvykswAmMjyQhXX5CbGFgBkIWFGuq3raedr1zhrBud76hsa0zx2tDP9p-kxIt3hj7FH0_sGQzADUhOpoXE8YHA-0KTc-RqTYEiA2dMmgWeTk2VlhtMC4y25asw-4t25z8nH89N2_Zpt3l_e1qtNZkUuhqzgLK8LCw2TRshKgcpLxtEqriC3AsqqLNLMlkWlmtJKZQCZFBJqUBZKI-bkYfI9BP81Yhx068fQp5Oa50JJLmTOE0tOLBt8jAEbfQiuM-GoGehTtrrVf9nqU7Z6yjYpV5MS0xPfDoOO1mFvsXYh8XXt3b8evwfuh0g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2438723742</pqid></control><display><type>article</type><title>Tin modification of sodium manganese hexacyanoferrate as a superior cathode material for sodium ion batteries</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Li, Jinke ; He, Xin ; Ostendorp, Stefan ; Zhang, Li ; Hou, Xu ; Zhou, Dong ; Yan, Bo ; Meira, Debora Motta ; Yang, Yang ; Jia, Hao ; Schumacher, Gerhard ; Wang, Jun ; Paillard, Elie ; Wilde, Gerhard ; Winter, Martin ; Li, Jie</creator><creatorcontrib>Li, Jinke ; He, Xin ; Ostendorp, Stefan ; Zhang, Li ; Hou, Xu ; Zhou, Dong ; Yan, Bo ; Meira, Debora Motta ; Yang, Yang ; Jia, Hao ; Schumacher, Gerhard ; Wang, Jun ; Paillard, Elie ; Wilde, Gerhard ; Winter, Martin ; Li, Jie</creatorcontrib><description>Tin modified sodium manganese hexacyanoferrate, as a Prussian blue analogue, is studied as a cathode material for sodium ion batteries. By co-precipitation of Sn4+ during the synthesis process, the modified sodium manganese hexacyanoferrate materials crystallize with face-centered cubic structure with space group Fm3¯m, while the unmodified one possesses a rhombohedral structure with space group R3¯m. Compared to the unmodified material, the modified materials exhibit smaller particles with rougher surface, showing improved rate capability and cycling stability. The material modified by 10% Sn maintains 80.5% capacity after 100 cycles at 2 C (240 mA g−1) and delivers 53.4 mA h g−1 at 20 C. Both Fe and Mn take part in the redox reaction and the structural changes are reversible upon the initial Na+ extraction and insertion for both pristine and modified samples. For long-term cycling, the modified materials undergo less structural transformation than the pristine material that may lead to a better structural stability, and furthermore to enhanced cycling performance.</description><identifier>ISSN: 0013-4686</identifier><identifier>EISSN: 1873-3859</identifier><identifier>DOI: 10.1016/j.electacta.2020.135928</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Cathode materials ; Cathodes ; Cycles ; Electrode materials ; Manganese ; Pigments ; Redox reactions ; Sodium ; Sodium manganese hexacyanoferrate ; Sodium-ion batteries ; Structural stability</subject><ispartof>Electrochimica acta, 2020-05, Vol.342, p.135928, Article 135928</ispartof><rights>2020 Elsevier Ltd</rights><rights>Copyright Elsevier BV May 10, 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c343t-6214d6c0f17a37b8084912ec82804c309b9612e156b8f9c78a0e17370d08c09a3</citedby><cites>FETCH-LOGICAL-c343t-6214d6c0f17a37b8084912ec82804c309b9612e156b8f9c78a0e17370d08c09a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.electacta.2020.135928$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3548,27923,27924,45994</link.rule.ids></links><search><creatorcontrib>Li, Jinke</creatorcontrib><creatorcontrib>He, Xin</creatorcontrib><creatorcontrib>Ostendorp, Stefan</creatorcontrib><creatorcontrib>Zhang, Li</creatorcontrib><creatorcontrib>Hou, Xu</creatorcontrib><creatorcontrib>Zhou, Dong</creatorcontrib><creatorcontrib>Yan, Bo</creatorcontrib><creatorcontrib>Meira, Debora Motta</creatorcontrib><creatorcontrib>Yang, Yang</creatorcontrib><creatorcontrib>Jia, Hao</creatorcontrib><creatorcontrib>Schumacher, Gerhard</creatorcontrib><creatorcontrib>Wang, Jun</creatorcontrib><creatorcontrib>Paillard, Elie</creatorcontrib><creatorcontrib>Wilde, Gerhard</creatorcontrib><creatorcontrib>Winter, Martin</creatorcontrib><creatorcontrib>Li, Jie</creatorcontrib><title>Tin modification of sodium manganese hexacyanoferrate as a superior cathode material for sodium ion batteries</title><title>Electrochimica acta</title><description>Tin modified sodium manganese hexacyanoferrate, as a Prussian blue analogue, is studied as a cathode material for sodium ion batteries. By co-precipitation of Sn4+ during the synthesis process, the modified sodium manganese hexacyanoferrate materials crystallize with face-centered cubic structure with space group Fm3¯m, while the unmodified one possesses a rhombohedral structure with space group R3¯m. Compared to the unmodified material, the modified materials exhibit smaller particles with rougher surface, showing improved rate capability and cycling stability. The material modified by 10% Sn maintains 80.5% capacity after 100 cycles at 2 C (240 mA g−1) and delivers 53.4 mA h g−1 at 20 C. Both Fe and Mn take part in the redox reaction and the structural changes are reversible upon the initial Na+ extraction and insertion for both pristine and modified samples. For long-term cycling, the modified materials undergo less structural transformation than the pristine material that may lead to a better structural stability, and furthermore to enhanced cycling performance.</description><subject>Cathode materials</subject><subject>Cathodes</subject><subject>Cycles</subject><subject>Electrode materials</subject><subject>Manganese</subject><subject>Pigments</subject><subject>Redox reactions</subject><subject>Sodium</subject><subject>Sodium manganese hexacyanoferrate</subject><subject>Sodium-ion batteries</subject><subject>Structural stability</subject><issn>0013-4686</issn><issn>1873-3859</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqFUMtqwzAQFKWFpmm_oYKena4kx5KPIfQFgV7Ss5DldSMTW6lkl-bvq-DQa2Fh2dmZWXYIuWewYMCKx3aBe7SDSbXgwBMqliVXF2TGlBSZUMvykswAmMjyQhXX5CbGFgBkIWFGuq3raedr1zhrBud76hsa0zx2tDP9p-kxIt3hj7FH0_sGQzADUhOpoXE8YHA-0KTc-RqTYEiA2dMmgWeTk2VlhtMC4y25asw-4t25z8nH89N2_Zpt3l_e1qtNZkUuhqzgLK8LCw2TRshKgcpLxtEqriC3AsqqLNLMlkWlmtJKZQCZFBJqUBZKI-bkYfI9BP81Yhx068fQp5Oa50JJLmTOE0tOLBt8jAEbfQiuM-GoGehTtrrVf9nqU7Z6yjYpV5MS0xPfDoOO1mFvsXYh8XXt3b8evwfuh0g</recordid><startdate>20200510</startdate><enddate>20200510</enddate><creator>Li, Jinke</creator><creator>He, Xin</creator><creator>Ostendorp, Stefan</creator><creator>Zhang, Li</creator><creator>Hou, Xu</creator><creator>Zhou, Dong</creator><creator>Yan, Bo</creator><creator>Meira, Debora Motta</creator><creator>Yang, Yang</creator><creator>Jia, Hao</creator><creator>Schumacher, Gerhard</creator><creator>Wang, Jun</creator><creator>Paillard, Elie</creator><creator>Wilde, Gerhard</creator><creator>Winter, Martin</creator><creator>Li, Jie</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20200510</creationdate><title>Tin modification of sodium manganese hexacyanoferrate as a superior cathode material for sodium ion batteries</title><author>Li, Jinke ; He, Xin ; Ostendorp, Stefan ; Zhang, Li ; Hou, Xu ; Zhou, Dong ; Yan, Bo ; Meira, Debora Motta ; Yang, Yang ; Jia, Hao ; Schumacher, Gerhard ; Wang, Jun ; Paillard, Elie ; Wilde, Gerhard ; Winter, Martin ; Li, Jie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c343t-6214d6c0f17a37b8084912ec82804c309b9612e156b8f9c78a0e17370d08c09a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Cathode materials</topic><topic>Cathodes</topic><topic>Cycles</topic><topic>Electrode materials</topic><topic>Manganese</topic><topic>Pigments</topic><topic>Redox reactions</topic><topic>Sodium</topic><topic>Sodium manganese hexacyanoferrate</topic><topic>Sodium-ion batteries</topic><topic>Structural stability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Jinke</creatorcontrib><creatorcontrib>He, Xin</creatorcontrib><creatorcontrib>Ostendorp, Stefan</creatorcontrib><creatorcontrib>Zhang, Li</creatorcontrib><creatorcontrib>Hou, Xu</creatorcontrib><creatorcontrib>Zhou, Dong</creatorcontrib><creatorcontrib>Yan, Bo</creatorcontrib><creatorcontrib>Meira, Debora Motta</creatorcontrib><creatorcontrib>Yang, Yang</creatorcontrib><creatorcontrib>Jia, Hao</creatorcontrib><creatorcontrib>Schumacher, Gerhard</creatorcontrib><creatorcontrib>Wang, Jun</creatorcontrib><creatorcontrib>Paillard, Elie</creatorcontrib><creatorcontrib>Wilde, Gerhard</creatorcontrib><creatorcontrib>Winter, Martin</creatorcontrib><creatorcontrib>Li, Jie</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Electrochimica acta</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Jinke</au><au>He, Xin</au><au>Ostendorp, Stefan</au><au>Zhang, Li</au><au>Hou, Xu</au><au>Zhou, Dong</au><au>Yan, Bo</au><au>Meira, Debora Motta</au><au>Yang, Yang</au><au>Jia, Hao</au><au>Schumacher, Gerhard</au><au>Wang, Jun</au><au>Paillard, Elie</au><au>Wilde, Gerhard</au><au>Winter, Martin</au><au>Li, Jie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tin modification of sodium manganese hexacyanoferrate as a superior cathode material for sodium ion batteries</atitle><jtitle>Electrochimica acta</jtitle><date>2020-05-10</date><risdate>2020</risdate><volume>342</volume><spage>135928</spage><pages>135928-</pages><artnum>135928</artnum><issn>0013-4686</issn><eissn>1873-3859</eissn><abstract>Tin modified sodium manganese hexacyanoferrate, as a Prussian blue analogue, is studied as a cathode material for sodium ion batteries. By co-precipitation of Sn4+ during the synthesis process, the modified sodium manganese hexacyanoferrate materials crystallize with face-centered cubic structure with space group Fm3¯m, while the unmodified one possesses a rhombohedral structure with space group R3¯m. Compared to the unmodified material, the modified materials exhibit smaller particles with rougher surface, showing improved rate capability and cycling stability. The material modified by 10% Sn maintains 80.5% capacity after 100 cycles at 2 C (240 mA g−1) and delivers 53.4 mA h g−1 at 20 C. Both Fe and Mn take part in the redox reaction and the structural changes are reversible upon the initial Na+ extraction and insertion for both pristine and modified samples. For long-term cycling, the modified materials undergo less structural transformation than the pristine material that may lead to a better structural stability, and furthermore to enhanced cycling performance.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.electacta.2020.135928</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0013-4686 |
ispartof | Electrochimica acta, 2020-05, Vol.342, p.135928, Article 135928 |
issn | 0013-4686 1873-3859 |
language | eng |
recordid | cdi_proquest_journals_2438723742 |
source | ScienceDirect Journals (5 years ago - present) |
subjects | Cathode materials Cathodes Cycles Electrode materials Manganese Pigments Redox reactions Sodium Sodium manganese hexacyanoferrate Sodium-ion batteries Structural stability |
title | Tin modification of sodium manganese hexacyanoferrate as a superior cathode material for sodium ion batteries |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T06%3A53%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tin%20modification%20of%20sodium%20manganese%20hexacyanoferrate%20as%20a%20superior%20cathode%20material%20for%20sodium%20ion%20batteries&rft.jtitle=Electrochimica%20acta&rft.au=Li,%20Jinke&rft.date=2020-05-10&rft.volume=342&rft.spage=135928&rft.pages=135928-&rft.artnum=135928&rft.issn=0013-4686&rft.eissn=1873-3859&rft_id=info:doi/10.1016/j.electacta.2020.135928&rft_dat=%3Cproquest_cross%3E2438723742%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2438723742&rft_id=info:pmid/&rft_els_id=S0013468620303200&rfr_iscdi=true |