Tin modification of sodium manganese hexacyanoferrate as a superior cathode material for sodium ion batteries

Tin modified sodium manganese hexacyanoferrate, as a Prussian blue analogue, is studied as a cathode material for sodium ion batteries. By co-precipitation of Sn4+ during the synthesis process, the modified sodium manganese hexacyanoferrate materials crystallize with face-centered cubic structure wi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Electrochimica acta 2020-05, Vol.342, p.135928, Article 135928
Hauptverfasser: Li, Jinke, He, Xin, Ostendorp, Stefan, Zhang, Li, Hou, Xu, Zhou, Dong, Yan, Bo, Meira, Debora Motta, Yang, Yang, Jia, Hao, Schumacher, Gerhard, Wang, Jun, Paillard, Elie, Wilde, Gerhard, Winter, Martin, Li, Jie
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 135928
container_title Electrochimica acta
container_volume 342
creator Li, Jinke
He, Xin
Ostendorp, Stefan
Zhang, Li
Hou, Xu
Zhou, Dong
Yan, Bo
Meira, Debora Motta
Yang, Yang
Jia, Hao
Schumacher, Gerhard
Wang, Jun
Paillard, Elie
Wilde, Gerhard
Winter, Martin
Li, Jie
description Tin modified sodium manganese hexacyanoferrate, as a Prussian blue analogue, is studied as a cathode material for sodium ion batteries. By co-precipitation of Sn4+ during the synthesis process, the modified sodium manganese hexacyanoferrate materials crystallize with face-centered cubic structure with space group Fm3¯m, while the unmodified one possesses a rhombohedral structure with space group R3¯m. Compared to the unmodified material, the modified materials exhibit smaller particles with rougher surface, showing improved rate capability and cycling stability. The material modified by 10% Sn maintains 80.5% capacity after 100 cycles at 2 C (240 mA g−1) and delivers 53.4 mA h g−1 at 20 C. Both Fe and Mn take part in the redox reaction and the structural changes are reversible upon the initial Na+ extraction and insertion for both pristine and modified samples. For long-term cycling, the modified materials undergo less structural transformation than the pristine material that may lead to a better structural stability, and furthermore to enhanced cycling performance.
doi_str_mv 10.1016/j.electacta.2020.135928
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2438723742</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0013468620303200</els_id><sourcerecordid>2438723742</sourcerecordid><originalsourceid>FETCH-LOGICAL-c343t-6214d6c0f17a37b8084912ec82804c309b9612e156b8f9c78a0e17370d08c09a3</originalsourceid><addsrcrecordid>eNqFUMtqwzAQFKWFpmm_oYKena4kx5KPIfQFgV7Ss5DldSMTW6lkl-bvq-DQa2Fh2dmZWXYIuWewYMCKx3aBe7SDSbXgwBMqliVXF2TGlBSZUMvykswAmMjyQhXX5CbGFgBkIWFGuq3raedr1zhrBud76hsa0zx2tDP9p-kxIt3hj7FH0_sGQzADUhOpoXE8YHA-0KTc-RqTYEiA2dMmgWeTk2VlhtMC4y25asw-4t25z8nH89N2_Zpt3l_e1qtNZkUuhqzgLK8LCw2TRshKgcpLxtEqriC3AsqqLNLMlkWlmtJKZQCZFBJqUBZKI-bkYfI9BP81Yhx068fQp5Oa50JJLmTOE0tOLBt8jAEbfQiuM-GoGehTtrrVf9nqU7Z6yjYpV5MS0xPfDoOO1mFvsXYh8XXt3b8evwfuh0g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2438723742</pqid></control><display><type>article</type><title>Tin modification of sodium manganese hexacyanoferrate as a superior cathode material for sodium ion batteries</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Li, Jinke ; He, Xin ; Ostendorp, Stefan ; Zhang, Li ; Hou, Xu ; Zhou, Dong ; Yan, Bo ; Meira, Debora Motta ; Yang, Yang ; Jia, Hao ; Schumacher, Gerhard ; Wang, Jun ; Paillard, Elie ; Wilde, Gerhard ; Winter, Martin ; Li, Jie</creator><creatorcontrib>Li, Jinke ; He, Xin ; Ostendorp, Stefan ; Zhang, Li ; Hou, Xu ; Zhou, Dong ; Yan, Bo ; Meira, Debora Motta ; Yang, Yang ; Jia, Hao ; Schumacher, Gerhard ; Wang, Jun ; Paillard, Elie ; Wilde, Gerhard ; Winter, Martin ; Li, Jie</creatorcontrib><description>Tin modified sodium manganese hexacyanoferrate, as a Prussian blue analogue, is studied as a cathode material for sodium ion batteries. By co-precipitation of Sn4+ during the synthesis process, the modified sodium manganese hexacyanoferrate materials crystallize with face-centered cubic structure with space group Fm3¯m, while the unmodified one possesses a rhombohedral structure with space group R3¯m. Compared to the unmodified material, the modified materials exhibit smaller particles with rougher surface, showing improved rate capability and cycling stability. The material modified by 10% Sn maintains 80.5% capacity after 100 cycles at 2 C (240 mA g−1) and delivers 53.4 mA h g−1 at 20 C. Both Fe and Mn take part in the redox reaction and the structural changes are reversible upon the initial Na+ extraction and insertion for both pristine and modified samples. For long-term cycling, the modified materials undergo less structural transformation than the pristine material that may lead to a better structural stability, and furthermore to enhanced cycling performance.</description><identifier>ISSN: 0013-4686</identifier><identifier>EISSN: 1873-3859</identifier><identifier>DOI: 10.1016/j.electacta.2020.135928</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Cathode materials ; Cathodes ; Cycles ; Electrode materials ; Manganese ; Pigments ; Redox reactions ; Sodium ; Sodium manganese hexacyanoferrate ; Sodium-ion batteries ; Structural stability</subject><ispartof>Electrochimica acta, 2020-05, Vol.342, p.135928, Article 135928</ispartof><rights>2020 Elsevier Ltd</rights><rights>Copyright Elsevier BV May 10, 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c343t-6214d6c0f17a37b8084912ec82804c309b9612e156b8f9c78a0e17370d08c09a3</citedby><cites>FETCH-LOGICAL-c343t-6214d6c0f17a37b8084912ec82804c309b9612e156b8f9c78a0e17370d08c09a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.electacta.2020.135928$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3548,27923,27924,45994</link.rule.ids></links><search><creatorcontrib>Li, Jinke</creatorcontrib><creatorcontrib>He, Xin</creatorcontrib><creatorcontrib>Ostendorp, Stefan</creatorcontrib><creatorcontrib>Zhang, Li</creatorcontrib><creatorcontrib>Hou, Xu</creatorcontrib><creatorcontrib>Zhou, Dong</creatorcontrib><creatorcontrib>Yan, Bo</creatorcontrib><creatorcontrib>Meira, Debora Motta</creatorcontrib><creatorcontrib>Yang, Yang</creatorcontrib><creatorcontrib>Jia, Hao</creatorcontrib><creatorcontrib>Schumacher, Gerhard</creatorcontrib><creatorcontrib>Wang, Jun</creatorcontrib><creatorcontrib>Paillard, Elie</creatorcontrib><creatorcontrib>Wilde, Gerhard</creatorcontrib><creatorcontrib>Winter, Martin</creatorcontrib><creatorcontrib>Li, Jie</creatorcontrib><title>Tin modification of sodium manganese hexacyanoferrate as a superior cathode material for sodium ion batteries</title><title>Electrochimica acta</title><description>Tin modified sodium manganese hexacyanoferrate, as a Prussian blue analogue, is studied as a cathode material for sodium ion batteries. By co-precipitation of Sn4+ during the synthesis process, the modified sodium manganese hexacyanoferrate materials crystallize with face-centered cubic structure with space group Fm3¯m, while the unmodified one possesses a rhombohedral structure with space group R3¯m. Compared to the unmodified material, the modified materials exhibit smaller particles with rougher surface, showing improved rate capability and cycling stability. The material modified by 10% Sn maintains 80.5% capacity after 100 cycles at 2 C (240 mA g−1) and delivers 53.4 mA h g−1 at 20 C. Both Fe and Mn take part in the redox reaction and the structural changes are reversible upon the initial Na+ extraction and insertion for both pristine and modified samples. For long-term cycling, the modified materials undergo less structural transformation than the pristine material that may lead to a better structural stability, and furthermore to enhanced cycling performance.</description><subject>Cathode materials</subject><subject>Cathodes</subject><subject>Cycles</subject><subject>Electrode materials</subject><subject>Manganese</subject><subject>Pigments</subject><subject>Redox reactions</subject><subject>Sodium</subject><subject>Sodium manganese hexacyanoferrate</subject><subject>Sodium-ion batteries</subject><subject>Structural stability</subject><issn>0013-4686</issn><issn>1873-3859</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqFUMtqwzAQFKWFpmm_oYKena4kx5KPIfQFgV7Ss5DldSMTW6lkl-bvq-DQa2Fh2dmZWXYIuWewYMCKx3aBe7SDSbXgwBMqliVXF2TGlBSZUMvykswAmMjyQhXX5CbGFgBkIWFGuq3raedr1zhrBud76hsa0zx2tDP9p-kxIt3hj7FH0_sGQzADUhOpoXE8YHA-0KTc-RqTYEiA2dMmgWeTk2VlhtMC4y25asw-4t25z8nH89N2_Zpt3l_e1qtNZkUuhqzgLK8LCw2TRshKgcpLxtEqriC3AsqqLNLMlkWlmtJKZQCZFBJqUBZKI-bkYfI9BP81Yhx068fQp5Oa50JJLmTOE0tOLBt8jAEbfQiuM-GoGehTtrrVf9nqU7Z6yjYpV5MS0xPfDoOO1mFvsXYh8XXt3b8evwfuh0g</recordid><startdate>20200510</startdate><enddate>20200510</enddate><creator>Li, Jinke</creator><creator>He, Xin</creator><creator>Ostendorp, Stefan</creator><creator>Zhang, Li</creator><creator>Hou, Xu</creator><creator>Zhou, Dong</creator><creator>Yan, Bo</creator><creator>Meira, Debora Motta</creator><creator>Yang, Yang</creator><creator>Jia, Hao</creator><creator>Schumacher, Gerhard</creator><creator>Wang, Jun</creator><creator>Paillard, Elie</creator><creator>Wilde, Gerhard</creator><creator>Winter, Martin</creator><creator>Li, Jie</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20200510</creationdate><title>Tin modification of sodium manganese hexacyanoferrate as a superior cathode material for sodium ion batteries</title><author>Li, Jinke ; He, Xin ; Ostendorp, Stefan ; Zhang, Li ; Hou, Xu ; Zhou, Dong ; Yan, Bo ; Meira, Debora Motta ; Yang, Yang ; Jia, Hao ; Schumacher, Gerhard ; Wang, Jun ; Paillard, Elie ; Wilde, Gerhard ; Winter, Martin ; Li, Jie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c343t-6214d6c0f17a37b8084912ec82804c309b9612e156b8f9c78a0e17370d08c09a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Cathode materials</topic><topic>Cathodes</topic><topic>Cycles</topic><topic>Electrode materials</topic><topic>Manganese</topic><topic>Pigments</topic><topic>Redox reactions</topic><topic>Sodium</topic><topic>Sodium manganese hexacyanoferrate</topic><topic>Sodium-ion batteries</topic><topic>Structural stability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Jinke</creatorcontrib><creatorcontrib>He, Xin</creatorcontrib><creatorcontrib>Ostendorp, Stefan</creatorcontrib><creatorcontrib>Zhang, Li</creatorcontrib><creatorcontrib>Hou, Xu</creatorcontrib><creatorcontrib>Zhou, Dong</creatorcontrib><creatorcontrib>Yan, Bo</creatorcontrib><creatorcontrib>Meira, Debora Motta</creatorcontrib><creatorcontrib>Yang, Yang</creatorcontrib><creatorcontrib>Jia, Hao</creatorcontrib><creatorcontrib>Schumacher, Gerhard</creatorcontrib><creatorcontrib>Wang, Jun</creatorcontrib><creatorcontrib>Paillard, Elie</creatorcontrib><creatorcontrib>Wilde, Gerhard</creatorcontrib><creatorcontrib>Winter, Martin</creatorcontrib><creatorcontrib>Li, Jie</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Electrochimica acta</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Jinke</au><au>He, Xin</au><au>Ostendorp, Stefan</au><au>Zhang, Li</au><au>Hou, Xu</au><au>Zhou, Dong</au><au>Yan, Bo</au><au>Meira, Debora Motta</au><au>Yang, Yang</au><au>Jia, Hao</au><au>Schumacher, Gerhard</au><au>Wang, Jun</au><au>Paillard, Elie</au><au>Wilde, Gerhard</au><au>Winter, Martin</au><au>Li, Jie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tin modification of sodium manganese hexacyanoferrate as a superior cathode material for sodium ion batteries</atitle><jtitle>Electrochimica acta</jtitle><date>2020-05-10</date><risdate>2020</risdate><volume>342</volume><spage>135928</spage><pages>135928-</pages><artnum>135928</artnum><issn>0013-4686</issn><eissn>1873-3859</eissn><abstract>Tin modified sodium manganese hexacyanoferrate, as a Prussian blue analogue, is studied as a cathode material for sodium ion batteries. By co-precipitation of Sn4+ during the synthesis process, the modified sodium manganese hexacyanoferrate materials crystallize with face-centered cubic structure with space group Fm3¯m, while the unmodified one possesses a rhombohedral structure with space group R3¯m. Compared to the unmodified material, the modified materials exhibit smaller particles with rougher surface, showing improved rate capability and cycling stability. The material modified by 10% Sn maintains 80.5% capacity after 100 cycles at 2 C (240 mA g−1) and delivers 53.4 mA h g−1 at 20 C. Both Fe and Mn take part in the redox reaction and the structural changes are reversible upon the initial Na+ extraction and insertion for both pristine and modified samples. For long-term cycling, the modified materials undergo less structural transformation than the pristine material that may lead to a better structural stability, and furthermore to enhanced cycling performance.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.electacta.2020.135928</doi></addata></record>
fulltext fulltext
identifier ISSN: 0013-4686
ispartof Electrochimica acta, 2020-05, Vol.342, p.135928, Article 135928
issn 0013-4686
1873-3859
language eng
recordid cdi_proquest_journals_2438723742
source ScienceDirect Journals (5 years ago - present)
subjects Cathode materials
Cathodes
Cycles
Electrode materials
Manganese
Pigments
Redox reactions
Sodium
Sodium manganese hexacyanoferrate
Sodium-ion batteries
Structural stability
title Tin modification of sodium manganese hexacyanoferrate as a superior cathode material for sodium ion batteries
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T06%3A53%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tin%20modification%20of%20sodium%20manganese%20hexacyanoferrate%20as%20a%20superior%20cathode%20material%20for%20sodium%20ion%20batteries&rft.jtitle=Electrochimica%20acta&rft.au=Li,%20Jinke&rft.date=2020-05-10&rft.volume=342&rft.spage=135928&rft.pages=135928-&rft.artnum=135928&rft.issn=0013-4686&rft.eissn=1873-3859&rft_id=info:doi/10.1016/j.electacta.2020.135928&rft_dat=%3Cproquest_cross%3E2438723742%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2438723742&rft_id=info:pmid/&rft_els_id=S0013468620303200&rfr_iscdi=true