Dynamics and control of periodic and non-periodic behavior of Duffing vibrating system with fractional damping and excited by a non-ideal motor
This paper deals with a non-ideal system with memory by possessing a fractional damping term. The system is characterized by additional cubic nonlinearity. Based on the time series form of the numerical simulations of this non-ideal model, the nonlinear dynamical response of the system is investigat...
Gespeichert in:
Veröffentlicht in: | Journal of the Franklin Institute 2020-03, Vol.357 (4), p.2067-2082 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2082 |
---|---|
container_issue | 4 |
container_start_page | 2067 |
container_title | Journal of the Franklin Institute |
container_volume | 357 |
creator | Varanis, Marcus V. Tusset, Angelo Marcelo Balthazar, José Manoel Litak, Grzegorz Oliveira, Clivaldo Rocha, Rodrigo Tumolin Nabarrete, Airton Piccirillo, Vinicius |
description | This paper deals with a non-ideal system with memory by possessing a fractional damping term. The system is characterized by additional cubic nonlinearity. Based on the time series form of the numerical simulations of this non-ideal model, the nonlinear dynamical response of the system is investigated. A DC electric motor with limited power supply driving by an unbalanced rotating mass provides the non-ideal excitation. To distinguish between periodic and non-periodic behaviors, they are used three different mathematical tools, which are the 0–1 test, scale index and wavelet technique. The response of the considered system is investigated with respect to the fractional damping derivative term and the voltage applied in the DC motor, which is considered as a control parameter. Numerical results showed that, the scale index, 0–1 test and the wavelet transform technique defined very accurately the periodic and non-periodic motions. |
doi_str_mv | 10.1016/j.jfranklin.2019.11.048 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2438723535</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0016003219308373</els_id><sourcerecordid>2438723535</sourcerecordid><originalsourceid>FETCH-LOGICAL-c343t-118e84b00a1cc0cd82f9e76ae0c694dfd45e87f700a4c060ee7765b30f2fe0963</originalsourceid><addsrcrecordid>eNqFkMFuGyEQhlHUSHHdPEOQet7tsLtedo-W3aaVIuWSnhELQ8zWCy5gt36KvHLYuMq1mgPD8P2_hp-QOwYlA9Z-GcvRBOl-7a0rK2B9yVgJTXdFFqzjfVG1ff2BLCCjBUBd3ZCPMY75yhnAgrxsz05OVkUqnabKuxT8nnpDDxis11a9zZ13xftgwJ08WR9mans0xrpnerJDkGnu4jkmnOgfm3Y076WS9U7uqZbTYX6e3fCvsgk1Hc5UvllbjRmZfPLhE7k2ch_x9t-5JD-_fX3afC8eHu9_bNYPhaqbOhWMddg1A4BkSoHSXWV65K1EUG3faKObFXbc8Aw0ClpA5LxdDTWYyiD0bb0kny--h-B_HzEmMfpjyJtGUTV1x6t6lWtJ-IVSwccY0IhDsJMMZ8FAzOmLUbynL-b0BWMip5-V64sS8ydOFoOIyqJTqG1AlYT29r8er8kIlPk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2438723535</pqid></control><display><type>article</type><title>Dynamics and control of periodic and non-periodic behavior of Duffing vibrating system with fractional damping and excited by a non-ideal motor</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Varanis, Marcus V. ; Tusset, Angelo Marcelo ; Balthazar, José Manoel ; Litak, Grzegorz ; Oliveira, Clivaldo ; Rocha, Rodrigo Tumolin ; Nabarrete, Airton ; Piccirillo, Vinicius</creator><creatorcontrib>Varanis, Marcus V. ; Tusset, Angelo Marcelo ; Balthazar, José Manoel ; Litak, Grzegorz ; Oliveira, Clivaldo ; Rocha, Rodrigo Tumolin ; Nabarrete, Airton ; Piccirillo, Vinicius</creatorcontrib><description>This paper deals with a non-ideal system with memory by possessing a fractional damping term. The system is characterized by additional cubic nonlinearity. Based on the time series form of the numerical simulations of this non-ideal model, the nonlinear dynamical response of the system is investigated. A DC electric motor with limited power supply driving by an unbalanced rotating mass provides the non-ideal excitation. To distinguish between periodic and non-periodic behaviors, they are used three different mathematical tools, which are the 0–1 test, scale index and wavelet technique. The response of the considered system is investigated with respect to the fractional damping derivative term and the voltage applied in the DC motor, which is considered as a control parameter. Numerical results showed that, the scale index, 0–1 test and the wavelet transform technique defined very accurately the periodic and non-periodic motions.</description><identifier>ISSN: 0016-0032</identifier><identifier>EISSN: 1879-2693</identifier><identifier>EISSN: 0016-0032</identifier><identifier>DOI: 10.1016/j.jfranklin.2019.11.048</identifier><language>eng</language><publisher>Elmsford: Elsevier Ltd</publisher><subject>Computer simulation ; D C motors ; Damping ; Electric motors ; Electric power supplies ; Mathematical models ; Nonlinear response ; Nonlinear systems ; Nonlinearity ; Numerical analysis ; Wavelet transforms</subject><ispartof>Journal of the Franklin Institute, 2020-03, Vol.357 (4), p.2067-2082</ispartof><rights>2019 The Franklin Institute</rights><rights>Copyright Elsevier Science Ltd. Mar 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c343t-118e84b00a1cc0cd82f9e76ae0c694dfd45e87f700a4c060ee7765b30f2fe0963</citedby><cites>FETCH-LOGICAL-c343t-118e84b00a1cc0cd82f9e76ae0c694dfd45e87f700a4c060ee7765b30f2fe0963</cites><orcidid>0000-0002-1617-9063</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jfranklin.2019.11.048$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Varanis, Marcus V.</creatorcontrib><creatorcontrib>Tusset, Angelo Marcelo</creatorcontrib><creatorcontrib>Balthazar, José Manoel</creatorcontrib><creatorcontrib>Litak, Grzegorz</creatorcontrib><creatorcontrib>Oliveira, Clivaldo</creatorcontrib><creatorcontrib>Rocha, Rodrigo Tumolin</creatorcontrib><creatorcontrib>Nabarrete, Airton</creatorcontrib><creatorcontrib>Piccirillo, Vinicius</creatorcontrib><title>Dynamics and control of periodic and non-periodic behavior of Duffing vibrating system with fractional damping and excited by a non-ideal motor</title><title>Journal of the Franklin Institute</title><description>This paper deals with a non-ideal system with memory by possessing a fractional damping term. The system is characterized by additional cubic nonlinearity. Based on the time series form of the numerical simulations of this non-ideal model, the nonlinear dynamical response of the system is investigated. A DC electric motor with limited power supply driving by an unbalanced rotating mass provides the non-ideal excitation. To distinguish between periodic and non-periodic behaviors, they are used three different mathematical tools, which are the 0–1 test, scale index and wavelet technique. The response of the considered system is investigated with respect to the fractional damping derivative term and the voltage applied in the DC motor, which is considered as a control parameter. Numerical results showed that, the scale index, 0–1 test and the wavelet transform technique defined very accurately the periodic and non-periodic motions.</description><subject>Computer simulation</subject><subject>D C motors</subject><subject>Damping</subject><subject>Electric motors</subject><subject>Electric power supplies</subject><subject>Mathematical models</subject><subject>Nonlinear response</subject><subject>Nonlinear systems</subject><subject>Nonlinearity</subject><subject>Numerical analysis</subject><subject>Wavelet transforms</subject><issn>0016-0032</issn><issn>1879-2693</issn><issn>0016-0032</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqFkMFuGyEQhlHUSHHdPEOQet7tsLtedo-W3aaVIuWSnhELQ8zWCy5gt36KvHLYuMq1mgPD8P2_hp-QOwYlA9Z-GcvRBOl-7a0rK2B9yVgJTXdFFqzjfVG1ff2BLCCjBUBd3ZCPMY75yhnAgrxsz05OVkUqnabKuxT8nnpDDxis11a9zZ13xftgwJ08WR9mans0xrpnerJDkGnu4jkmnOgfm3Y076WS9U7uqZbTYX6e3fCvsgk1Hc5UvllbjRmZfPLhE7k2ch_x9t-5JD-_fX3afC8eHu9_bNYPhaqbOhWMddg1A4BkSoHSXWV65K1EUG3faKObFXbc8Aw0ClpA5LxdDTWYyiD0bb0kny--h-B_HzEmMfpjyJtGUTV1x6t6lWtJ-IVSwccY0IhDsJMMZ8FAzOmLUbynL-b0BWMip5-V64sS8ydOFoOIyqJTqG1AlYT29r8er8kIlPk</recordid><startdate>202003</startdate><enddate>202003</enddate><creator>Varanis, Marcus V.</creator><creator>Tusset, Angelo Marcelo</creator><creator>Balthazar, José Manoel</creator><creator>Litak, Grzegorz</creator><creator>Oliveira, Clivaldo</creator><creator>Rocha, Rodrigo Tumolin</creator><creator>Nabarrete, Airton</creator><creator>Piccirillo, Vinicius</creator><general>Elsevier Ltd</general><general>Elsevier Science Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><orcidid>https://orcid.org/0000-0002-1617-9063</orcidid></search><sort><creationdate>202003</creationdate><title>Dynamics and control of periodic and non-periodic behavior of Duffing vibrating system with fractional damping and excited by a non-ideal motor</title><author>Varanis, Marcus V. ; Tusset, Angelo Marcelo ; Balthazar, José Manoel ; Litak, Grzegorz ; Oliveira, Clivaldo ; Rocha, Rodrigo Tumolin ; Nabarrete, Airton ; Piccirillo, Vinicius</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c343t-118e84b00a1cc0cd82f9e76ae0c694dfd45e87f700a4c060ee7765b30f2fe0963</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Computer simulation</topic><topic>D C motors</topic><topic>Damping</topic><topic>Electric motors</topic><topic>Electric power supplies</topic><topic>Mathematical models</topic><topic>Nonlinear response</topic><topic>Nonlinear systems</topic><topic>Nonlinearity</topic><topic>Numerical analysis</topic><topic>Wavelet transforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Varanis, Marcus V.</creatorcontrib><creatorcontrib>Tusset, Angelo Marcelo</creatorcontrib><creatorcontrib>Balthazar, José Manoel</creatorcontrib><creatorcontrib>Litak, Grzegorz</creatorcontrib><creatorcontrib>Oliveira, Clivaldo</creatorcontrib><creatorcontrib>Rocha, Rodrigo Tumolin</creatorcontrib><creatorcontrib>Nabarrete, Airton</creatorcontrib><creatorcontrib>Piccirillo, Vinicius</creatorcontrib><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Journal of the Franklin Institute</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Varanis, Marcus V.</au><au>Tusset, Angelo Marcelo</au><au>Balthazar, José Manoel</au><au>Litak, Grzegorz</au><au>Oliveira, Clivaldo</au><au>Rocha, Rodrigo Tumolin</au><au>Nabarrete, Airton</au><au>Piccirillo, Vinicius</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dynamics and control of periodic and non-periodic behavior of Duffing vibrating system with fractional damping and excited by a non-ideal motor</atitle><jtitle>Journal of the Franklin Institute</jtitle><date>2020-03</date><risdate>2020</risdate><volume>357</volume><issue>4</issue><spage>2067</spage><epage>2082</epage><pages>2067-2082</pages><issn>0016-0032</issn><eissn>1879-2693</eissn><eissn>0016-0032</eissn><abstract>This paper deals with a non-ideal system with memory by possessing a fractional damping term. The system is characterized by additional cubic nonlinearity. Based on the time series form of the numerical simulations of this non-ideal model, the nonlinear dynamical response of the system is investigated. A DC electric motor with limited power supply driving by an unbalanced rotating mass provides the non-ideal excitation. To distinguish between periodic and non-periodic behaviors, they are used three different mathematical tools, which are the 0–1 test, scale index and wavelet technique. The response of the considered system is investigated with respect to the fractional damping derivative term and the voltage applied in the DC motor, which is considered as a control parameter. Numerical results showed that, the scale index, 0–1 test and the wavelet transform technique defined very accurately the periodic and non-periodic motions.</abstract><cop>Elmsford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.jfranklin.2019.11.048</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-1617-9063</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0016-0032 |
ispartof | Journal of the Franklin Institute, 2020-03, Vol.357 (4), p.2067-2082 |
issn | 0016-0032 1879-2693 0016-0032 |
language | eng |
recordid | cdi_proquest_journals_2438723535 |
source | Elsevier ScienceDirect Journals Complete |
subjects | Computer simulation D C motors Damping Electric motors Electric power supplies Mathematical models Nonlinear response Nonlinear systems Nonlinearity Numerical analysis Wavelet transforms |
title | Dynamics and control of periodic and non-periodic behavior of Duffing vibrating system with fractional damping and excited by a non-ideal motor |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T22%3A00%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dynamics%20and%20control%20of%20periodic%20and%20non-periodic%20behavior%20of%20Duffing%20vibrating%20system%20with%20fractional%20damping%20and%20excited%20by%20a%20non-ideal%20motor&rft.jtitle=Journal%20of%20the%20Franklin%20Institute&rft.au=Varanis,%20Marcus%20V.&rft.date=2020-03&rft.volume=357&rft.issue=4&rft.spage=2067&rft.epage=2082&rft.pages=2067-2082&rft.issn=0016-0032&rft.eissn=1879-2693&rft_id=info:doi/10.1016/j.jfranklin.2019.11.048&rft_dat=%3Cproquest_cross%3E2438723535%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2438723535&rft_id=info:pmid/&rft_els_id=S0016003219308373&rfr_iscdi=true |