Role of titanium dioxide (TiO2) structural design/morphology in photocatalytic air purification

[Display omitted] •Seven different TiO2 photocatalyst morphologies were synthesized via hydrothermal method.•Photocatalysts were thoroughly characterized and morphological evolutions were proposed.•TiO2 nanosheets and hollow spheres exhibited the highest performance for air purification.•Nanosheets...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied catalysis. B, Environmental Environmental, 2020-07, Vol.269, p.118735, Article 118735
Hauptverfasser: Mamaghani, Alireza Haghighat, Haghighat, Fariborz, Lee, Chang-Seo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 118735
container_title Applied catalysis. B, Environmental
container_volume 269
creator Mamaghani, Alireza Haghighat
Haghighat, Fariborz
Lee, Chang-Seo
description [Display omitted] •Seven different TiO2 photocatalyst morphologies were synthesized via hydrothermal method.•Photocatalysts were thoroughly characterized and morphological evolutions were proposed.•TiO2 nanosheets and hollow spheres exhibited the highest performance for air purification.•Nanosheets high percentage of [001] facet and co-presence of [001] and [101] facets led to high activity. Seven TiO2 morphologies were synthesized and evaluated for photocatalytic oxidation (PCO) of methyl ethyl ketone (MEK) in air. Photocatalysts were fabricated via hydrothermal method and the preparation parameters were adjusted to keep the variations in photocatalysts’ crystallinity, crystal composition, and surface area in narrow ranges, thus, allowing a better understanding of the morphology-performance relationship. Based on the characterization results and data available in literature, possible morphological evolutions for different structures were put forward. MEK removal efficiency improved in the order of solid spheres 
doi_str_mv 10.1016/j.apcatb.2020.118735
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2438723397</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0926337320301508</els_id><sourcerecordid>2438723397</sourcerecordid><originalsourceid>FETCH-LOGICAL-c400t-593192df1218b5e0c50e74d8f5ff5e15f5b2b6539261d02ad2235ddfac2c37c03</originalsourceid><addsrcrecordid>eNp9UMtKAzEUDaJgrf6Bi4AbXUybR9OZ2QgivqBQkLoOaR71DtPJmGTE_r0p49rVuVzOg3MQuqZkRgldzpuZ6rVK2xkjLL9oVXJxgiZHLHhV8VM0ITVbFpyX_BxdxNgQQhhn1QTJd99a7B1OkFQHwx4b8D9gLL7dwJrd4ZjCoNMQVIuNjbDr5nsf-k_f-t0BQ4fzmXwOV-0hgcYKAu6HAA7yD3x3ic6caqO9-sMp-nh-2jy-Fqv1y9vjw6rQC0JSIWpOa2YcZbTaCku0ILZcmMoJ54Slwokt2y4Fzy2oIUwZxrgwxinNNC814VN0M_r2wX8NNibZ-CF0OVKyBa9KxnldZtZiZOngYwzWyT7AXoWDpEQep5SNHKeUxynlOGWW3Y8ymxt8gw0yarCdtgaC1UkaD_8b_AKmNn8T</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2438723397</pqid></control><display><type>article</type><title>Role of titanium dioxide (TiO2) structural design/morphology in photocatalytic air purification</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Mamaghani, Alireza Haghighat ; Haghighat, Fariborz ; Lee, Chang-Seo</creator><creatorcontrib>Mamaghani, Alireza Haghighat ; Haghighat, Fariborz ; Lee, Chang-Seo</creatorcontrib><description><![CDATA[[Display omitted] •Seven different TiO2 photocatalyst morphologies were synthesized via hydrothermal method.•Photocatalysts were thoroughly characterized and morphological evolutions were proposed.•TiO2 nanosheets and hollow spheres exhibited the highest performance for air purification.•Nanosheets high percentage of [001] facet and co-presence of [001] and [101] facets led to high activity. Seven TiO2 morphologies were synthesized and evaluated for photocatalytic oxidation (PCO) of methyl ethyl ketone (MEK) in air. Photocatalysts were fabricated via hydrothermal method and the preparation parameters were adjusted to keep the variations in photocatalysts’ crystallinity, crystal composition, and surface area in narrow ranges, thus, allowing a better understanding of the morphology-performance relationship. Based on the characterization results and data available in literature, possible morphological evolutions for different structures were put forward. MEK removal efficiency improved in the order of solid spheres < mesoporous spheres < nanotubes <3-D hierarchically porous <3-D sea urchin-like < hollow spheres < nanosheets. TiO2 nanosheets were distinctly superior to other morphologies and offered 71.3 % removal efficiency, roughly two times higher than commercial P25. Titania nanosheets excellent performance was attributed to high percentage of exposed [001] facets, synergistic effect of [001] and [101] facets, large number of terminal Ti-OH species, and surface fluorination.]]></description><identifier>ISSN: 0926-3373</identifier><identifier>EISSN: 1873-3883</identifier><identifier>DOI: 10.1016/j.apcatb.2020.118735</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Air purification ; Fluorination ; Hollow sphere ; Hydrothermal crystal growth ; Hydrothermal/solvothermal ; Methyl ethyl ketone ; Morphology ; Nanosheet ; Nanostructure ; Nanotechnology ; Nanotubes ; Oxidation ; Photocatalysis ; Photocatalyst ; Photocatalysts ; Photooxidation ; Structural design ; Structural engineering ; Synergistic effect ; Titanium ; Titanium dioxide</subject><ispartof>Applied catalysis. B, Environmental, 2020-07, Vol.269, p.118735, Article 118735</ispartof><rights>2020 Elsevier B.V.</rights><rights>Copyright Elsevier BV Jul 15, 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c400t-593192df1218b5e0c50e74d8f5ff5e15f5b2b6539261d02ad2235ddfac2c37c03</citedby><cites>FETCH-LOGICAL-c400t-593192df1218b5e0c50e74d8f5ff5e15f5b2b6539261d02ad2235ddfac2c37c03</cites><orcidid>0000-0002-9531-5544 ; 0000-0003-2869-7308</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0926337320301508$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65534</link.rule.ids></links><search><creatorcontrib>Mamaghani, Alireza Haghighat</creatorcontrib><creatorcontrib>Haghighat, Fariborz</creatorcontrib><creatorcontrib>Lee, Chang-Seo</creatorcontrib><title>Role of titanium dioxide (TiO2) structural design/morphology in photocatalytic air purification</title><title>Applied catalysis. B, Environmental</title><description><![CDATA[[Display omitted] •Seven different TiO2 photocatalyst morphologies were synthesized via hydrothermal method.•Photocatalysts were thoroughly characterized and morphological evolutions were proposed.•TiO2 nanosheets and hollow spheres exhibited the highest performance for air purification.•Nanosheets high percentage of [001] facet and co-presence of [001] and [101] facets led to high activity. Seven TiO2 morphologies were synthesized and evaluated for photocatalytic oxidation (PCO) of methyl ethyl ketone (MEK) in air. Photocatalysts were fabricated via hydrothermal method and the preparation parameters were adjusted to keep the variations in photocatalysts’ crystallinity, crystal composition, and surface area in narrow ranges, thus, allowing a better understanding of the morphology-performance relationship. Based on the characterization results and data available in literature, possible morphological evolutions for different structures were put forward. MEK removal efficiency improved in the order of solid spheres < mesoporous spheres < nanotubes <3-D hierarchically porous <3-D sea urchin-like < hollow spheres < nanosheets. TiO2 nanosheets were distinctly superior to other morphologies and offered 71.3 % removal efficiency, roughly two times higher than commercial P25. Titania nanosheets excellent performance was attributed to high percentage of exposed [001] facets, synergistic effect of [001] and [101] facets, large number of terminal Ti-OH species, and surface fluorination.]]></description><subject>Air purification</subject><subject>Fluorination</subject><subject>Hollow sphere</subject><subject>Hydrothermal crystal growth</subject><subject>Hydrothermal/solvothermal</subject><subject>Methyl ethyl ketone</subject><subject>Morphology</subject><subject>Nanosheet</subject><subject>Nanostructure</subject><subject>Nanotechnology</subject><subject>Nanotubes</subject><subject>Oxidation</subject><subject>Photocatalysis</subject><subject>Photocatalyst</subject><subject>Photocatalysts</subject><subject>Photooxidation</subject><subject>Structural design</subject><subject>Structural engineering</subject><subject>Synergistic effect</subject><subject>Titanium</subject><subject>Titanium dioxide</subject><issn>0926-3373</issn><issn>1873-3883</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9UMtKAzEUDaJgrf6Bi4AbXUybR9OZ2QgivqBQkLoOaR71DtPJmGTE_r0p49rVuVzOg3MQuqZkRgldzpuZ6rVK2xkjLL9oVXJxgiZHLHhV8VM0ITVbFpyX_BxdxNgQQhhn1QTJd99a7B1OkFQHwx4b8D9gLL7dwJrd4ZjCoNMQVIuNjbDr5nsf-k_f-t0BQ4fzmXwOV-0hgcYKAu6HAA7yD3x3ic6caqO9-sMp-nh-2jy-Fqv1y9vjw6rQC0JSIWpOa2YcZbTaCku0ILZcmMoJ54Slwokt2y4Fzy2oIUwZxrgwxinNNC814VN0M_r2wX8NNibZ-CF0OVKyBa9KxnldZtZiZOngYwzWyT7AXoWDpEQep5SNHKeUxynlOGWW3Y8ymxt8gw0yarCdtgaC1UkaD_8b_AKmNn8T</recordid><startdate>20200715</startdate><enddate>20200715</enddate><creator>Mamaghani, Alireza Haghighat</creator><creator>Haghighat, Fariborz</creator><creator>Lee, Chang-Seo</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7ST</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>JG9</scope><scope>KR7</scope><scope>L7M</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0002-9531-5544</orcidid><orcidid>https://orcid.org/0000-0003-2869-7308</orcidid></search><sort><creationdate>20200715</creationdate><title>Role of titanium dioxide (TiO2) structural design/morphology in photocatalytic air purification</title><author>Mamaghani, Alireza Haghighat ; Haghighat, Fariborz ; Lee, Chang-Seo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c400t-593192df1218b5e0c50e74d8f5ff5e15f5b2b6539261d02ad2235ddfac2c37c03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Air purification</topic><topic>Fluorination</topic><topic>Hollow sphere</topic><topic>Hydrothermal crystal growth</topic><topic>Hydrothermal/solvothermal</topic><topic>Methyl ethyl ketone</topic><topic>Morphology</topic><topic>Nanosheet</topic><topic>Nanostructure</topic><topic>Nanotechnology</topic><topic>Nanotubes</topic><topic>Oxidation</topic><topic>Photocatalysis</topic><topic>Photocatalyst</topic><topic>Photocatalysts</topic><topic>Photooxidation</topic><topic>Structural design</topic><topic>Structural engineering</topic><topic>Synergistic effect</topic><topic>Titanium</topic><topic>Titanium dioxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mamaghani, Alireza Haghighat</creatorcontrib><creatorcontrib>Haghighat, Fariborz</creatorcontrib><creatorcontrib>Lee, Chang-Seo</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Applied catalysis. B, Environmental</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mamaghani, Alireza Haghighat</au><au>Haghighat, Fariborz</au><au>Lee, Chang-Seo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Role of titanium dioxide (TiO2) structural design/morphology in photocatalytic air purification</atitle><jtitle>Applied catalysis. B, Environmental</jtitle><date>2020-07-15</date><risdate>2020</risdate><volume>269</volume><spage>118735</spage><pages>118735-</pages><artnum>118735</artnum><issn>0926-3373</issn><eissn>1873-3883</eissn><abstract><![CDATA[[Display omitted] •Seven different TiO2 photocatalyst morphologies were synthesized via hydrothermal method.•Photocatalysts were thoroughly characterized and morphological evolutions were proposed.•TiO2 nanosheets and hollow spheres exhibited the highest performance for air purification.•Nanosheets high percentage of [001] facet and co-presence of [001] and [101] facets led to high activity. Seven TiO2 morphologies were synthesized and evaluated for photocatalytic oxidation (PCO) of methyl ethyl ketone (MEK) in air. Photocatalysts were fabricated via hydrothermal method and the preparation parameters were adjusted to keep the variations in photocatalysts’ crystallinity, crystal composition, and surface area in narrow ranges, thus, allowing a better understanding of the morphology-performance relationship. Based on the characterization results and data available in literature, possible morphological evolutions for different structures were put forward. MEK removal efficiency improved in the order of solid spheres < mesoporous spheres < nanotubes <3-D hierarchically porous <3-D sea urchin-like < hollow spheres < nanosheets. TiO2 nanosheets were distinctly superior to other morphologies and offered 71.3 % removal efficiency, roughly two times higher than commercial P25. Titania nanosheets excellent performance was attributed to high percentage of exposed [001] facets, synergistic effect of [001] and [101] facets, large number of terminal Ti-OH species, and surface fluorination.]]></abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.apcatb.2020.118735</doi><orcidid>https://orcid.org/0000-0002-9531-5544</orcidid><orcidid>https://orcid.org/0000-0003-2869-7308</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0926-3373
ispartof Applied catalysis. B, Environmental, 2020-07, Vol.269, p.118735, Article 118735
issn 0926-3373
1873-3883
language eng
recordid cdi_proquest_journals_2438723397
source Elsevier ScienceDirect Journals Complete
subjects Air purification
Fluorination
Hollow sphere
Hydrothermal crystal growth
Hydrothermal/solvothermal
Methyl ethyl ketone
Morphology
Nanosheet
Nanostructure
Nanotechnology
Nanotubes
Oxidation
Photocatalysis
Photocatalyst
Photocatalysts
Photooxidation
Structural design
Structural engineering
Synergistic effect
Titanium
Titanium dioxide
title Role of titanium dioxide (TiO2) structural design/morphology in photocatalytic air purification
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T22%3A42%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Role%20of%20titanium%20dioxide%20(TiO2)%20structural%20design/morphology%20in%20photocatalytic%20air%20purification&rft.jtitle=Applied%20catalysis.%20B,%20Environmental&rft.au=Mamaghani,%20Alireza%20Haghighat&rft.date=2020-07-15&rft.volume=269&rft.spage=118735&rft.pages=118735-&rft.artnum=118735&rft.issn=0926-3373&rft.eissn=1873-3883&rft_id=info:doi/10.1016/j.apcatb.2020.118735&rft_dat=%3Cproquest_cross%3E2438723397%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2438723397&rft_id=info:pmid/&rft_els_id=S0926337320301508&rfr_iscdi=true