Numerical investigation on the mutual interaction between heat transfer and non-spherical particle dynamics in the blast furnace raceway

•Investigate the interaction between heat transfer and microstructure of the raceway.•Explore the burden descending process with the coke particle discharged near the tuyere.•Discuss the effect of particle shape and inlet gas velocity on raceway evolution and heat transfer. In this paper, the couple...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of heat and mass transfer 2020-06, Vol.153, p.119577, Article 119577
Hauptverfasser: Wei, Guangchao, Zhang, Hao, An, Xizhong, E, Dianyu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 119577
container_title International journal of heat and mass transfer
container_volume 153
creator Wei, Guangchao
Zhang, Hao
An, Xizhong
E, Dianyu
description •Investigate the interaction between heat transfer and microstructure of the raceway.•Explore the burden descending process with the coke particle discharged near the tuyere.•Discuss the effect of particle shape and inlet gas velocity on raceway evolution and heat transfer. In this paper, the coupled computational fluid dynamics (CFD) and discrete element method (DEM) scheme is used to investigate the microstructure and heat transfer characteristics in a blast furnace (BF) raceway. The impact of gas velocity and particle shape on raceway evolution, microstructure characteristics, and particle temperature and voidage distributions is comprehensively explored based on the voidage change caused by the consumption of coke particles. Numerical results show that the oblate ellipsoidal particle system possesses higher average voidage in the original packing state and implements the faster burden descending rate than the prolate one under the same inlet velocity. For the non-spherical particle systems, larger contact forces exist in the oblate ellipsoidal particle system while the contact forces in the prolate ellipsoidal particle system are smaller. More uniform temperature distribution and higher average voidage can be caused by higher inlet gas velocities. Meanwhile, more prolate ellipsoidal particles are consumed than oblate ones under the same inlet velocity. These findings could be beneficial for understanding the kinetic and thermodynamic behaviors of particulate system within a BF raceway. [Display omitted]
doi_str_mv 10.1016/j.ijheatmasstransfer.2020.119577
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2438721741</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0017931019349890</els_id><sourcerecordid>2438721741</sourcerecordid><originalsourceid>FETCH-LOGICAL-c370t-fc7983700ade867d4d1fcac924cc8c122e97236b010af26b9491b34c3614e5643</originalsourceid><addsrcrecordid>eNqNkMGO1DAMhiMEEsPCO0TiwqVDkmab5gZawQJawQXOkeu6TKo2HZJ0V_MGPDbpzHLigmTJtn7rs_0z9kaKvRSyeTvu_XggyDOklCOENFDcK6GKLO21MU_YTrbGVkq29inbCSFNZWspnrMXKY1bK3SzY7-_rjNFjzBxH-4pZf8Tsl8CL5EPxOc1r2ctUwQ8Kx3lB6LAt-3872oOoedhCVU6Hh55R4jZ40S8PwWYPaZCOTO7CVLmwxoDIPGCpQc4vWTPBpgSvXrMV-zHxw_fbz5Vd99uP9-8v6uwNiJXAxrblkpAT21jet3LAQGt0ogtSqXIGlU3nZACBtV0VlvZ1RrrRmq6bnR9xV5fuMe4_FrLw25ctkum5JSuW6Ok0bJMvbtMYVxSijS4Y_QzxJOTwm3-u9H967_b_HcX_wviywVB5Zt7X9SEngJS7yNhdv3i_x_2B-M2njY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2438721741</pqid></control><display><type>article</type><title>Numerical investigation on the mutual interaction between heat transfer and non-spherical particle dynamics in the blast furnace raceway</title><source>Access via ScienceDirect (Elsevier)</source><creator>Wei, Guangchao ; Zhang, Hao ; An, Xizhong ; E, Dianyu</creator><creatorcontrib>Wei, Guangchao ; Zhang, Hao ; An, Xizhong ; E, Dianyu</creatorcontrib><description>•Investigate the interaction between heat transfer and microstructure of the raceway.•Explore the burden descending process with the coke particle discharged near the tuyere.•Discuss the effect of particle shape and inlet gas velocity on raceway evolution and heat transfer. In this paper, the coupled computational fluid dynamics (CFD) and discrete element method (DEM) scheme is used to investigate the microstructure and heat transfer characteristics in a blast furnace (BF) raceway. The impact of gas velocity and particle shape on raceway evolution, microstructure characteristics, and particle temperature and voidage distributions is comprehensively explored based on the voidage change caused by the consumption of coke particles. Numerical results show that the oblate ellipsoidal particle system possesses higher average voidage in the original packing state and implements the faster burden descending rate than the prolate one under the same inlet velocity. For the non-spherical particle systems, larger contact forces exist in the oblate ellipsoidal particle system while the contact forces in the prolate ellipsoidal particle system are smaller. More uniform temperature distribution and higher average voidage can be caused by higher inlet gas velocities. Meanwhile, more prolate ellipsoidal particles are consumed than oblate ones under the same inlet velocity. These findings could be beneficial for understanding the kinetic and thermodynamic behaviors of particulate system within a BF raceway. [Display omitted]</description><identifier>ISSN: 0017-9310</identifier><identifier>EISSN: 1879-2189</identifier><identifier>DOI: 10.1016/j.ijheatmasstransfer.2020.119577</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Blast furnace gas ; Blast furnace practice ; Blast furnace raceway ; CFD-DEM simulation ; Computational fluid dynamics ; Contact force ; Discrete element method ; Dynamic behaviours ; Ellipsoidal particle ; Heat transfer ; Microstructure ; Particle shape ; Temperature distribution</subject><ispartof>International journal of heat and mass transfer, 2020-06, Vol.153, p.119577, Article 119577</ispartof><rights>2020</rights><rights>Copyright Elsevier BV Jun 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c370t-fc7983700ade867d4d1fcac924cc8c122e97236b010af26b9491b34c3614e5643</citedby><cites>FETCH-LOGICAL-c370t-fc7983700ade867d4d1fcac924cc8c122e97236b010af26b9491b34c3614e5643</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ijheatmasstransfer.2020.119577$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Wei, Guangchao</creatorcontrib><creatorcontrib>Zhang, Hao</creatorcontrib><creatorcontrib>An, Xizhong</creatorcontrib><creatorcontrib>E, Dianyu</creatorcontrib><title>Numerical investigation on the mutual interaction between heat transfer and non-spherical particle dynamics in the blast furnace raceway</title><title>International journal of heat and mass transfer</title><description>•Investigate the interaction between heat transfer and microstructure of the raceway.•Explore the burden descending process with the coke particle discharged near the tuyere.•Discuss the effect of particle shape and inlet gas velocity on raceway evolution and heat transfer. In this paper, the coupled computational fluid dynamics (CFD) and discrete element method (DEM) scheme is used to investigate the microstructure and heat transfer characteristics in a blast furnace (BF) raceway. The impact of gas velocity and particle shape on raceway evolution, microstructure characteristics, and particle temperature and voidage distributions is comprehensively explored based on the voidage change caused by the consumption of coke particles. Numerical results show that the oblate ellipsoidal particle system possesses higher average voidage in the original packing state and implements the faster burden descending rate than the prolate one under the same inlet velocity. For the non-spherical particle systems, larger contact forces exist in the oblate ellipsoidal particle system while the contact forces in the prolate ellipsoidal particle system are smaller. More uniform temperature distribution and higher average voidage can be caused by higher inlet gas velocities. Meanwhile, more prolate ellipsoidal particles are consumed than oblate ones under the same inlet velocity. These findings could be beneficial for understanding the kinetic and thermodynamic behaviors of particulate system within a BF raceway. [Display omitted]</description><subject>Blast furnace gas</subject><subject>Blast furnace practice</subject><subject>Blast furnace raceway</subject><subject>CFD-DEM simulation</subject><subject>Computational fluid dynamics</subject><subject>Contact force</subject><subject>Discrete element method</subject><subject>Dynamic behaviours</subject><subject>Ellipsoidal particle</subject><subject>Heat transfer</subject><subject>Microstructure</subject><subject>Particle shape</subject><subject>Temperature distribution</subject><issn>0017-9310</issn><issn>1879-2189</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqNkMGO1DAMhiMEEsPCO0TiwqVDkmab5gZawQJawQXOkeu6TKo2HZJ0V_MGPDbpzHLigmTJtn7rs_0z9kaKvRSyeTvu_XggyDOklCOENFDcK6GKLO21MU_YTrbGVkq29inbCSFNZWspnrMXKY1bK3SzY7-_rjNFjzBxH-4pZf8Tsl8CL5EPxOc1r2ctUwQ8Kx3lB6LAt-3872oOoedhCVU6Hh55R4jZ40S8PwWYPaZCOTO7CVLmwxoDIPGCpQc4vWTPBpgSvXrMV-zHxw_fbz5Vd99uP9-8v6uwNiJXAxrblkpAT21jet3LAQGt0ogtSqXIGlU3nZACBtV0VlvZ1RrrRmq6bnR9xV5fuMe4_FrLw25ctkum5JSuW6Ok0bJMvbtMYVxSijS4Y_QzxJOTwm3-u9H967_b_HcX_wviywVB5Zt7X9SEngJS7yNhdv3i_x_2B-M2njY</recordid><startdate>202006</startdate><enddate>202006</enddate><creator>Wei, Guangchao</creator><creator>Zhang, Hao</creator><creator>An, Xizhong</creator><creator>E, Dianyu</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>202006</creationdate><title>Numerical investigation on the mutual interaction between heat transfer and non-spherical particle dynamics in the blast furnace raceway</title><author>Wei, Guangchao ; Zhang, Hao ; An, Xizhong ; E, Dianyu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c370t-fc7983700ade867d4d1fcac924cc8c122e97236b010af26b9491b34c3614e5643</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Blast furnace gas</topic><topic>Blast furnace practice</topic><topic>Blast furnace raceway</topic><topic>CFD-DEM simulation</topic><topic>Computational fluid dynamics</topic><topic>Contact force</topic><topic>Discrete element method</topic><topic>Dynamic behaviours</topic><topic>Ellipsoidal particle</topic><topic>Heat transfer</topic><topic>Microstructure</topic><topic>Particle shape</topic><topic>Temperature distribution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wei, Guangchao</creatorcontrib><creatorcontrib>Zhang, Hao</creatorcontrib><creatorcontrib>An, Xizhong</creatorcontrib><creatorcontrib>E, Dianyu</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>International journal of heat and mass transfer</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wei, Guangchao</au><au>Zhang, Hao</au><au>An, Xizhong</au><au>E, Dianyu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Numerical investigation on the mutual interaction between heat transfer and non-spherical particle dynamics in the blast furnace raceway</atitle><jtitle>International journal of heat and mass transfer</jtitle><date>2020-06</date><risdate>2020</risdate><volume>153</volume><spage>119577</spage><pages>119577-</pages><artnum>119577</artnum><issn>0017-9310</issn><eissn>1879-2189</eissn><abstract>•Investigate the interaction between heat transfer and microstructure of the raceway.•Explore the burden descending process with the coke particle discharged near the tuyere.•Discuss the effect of particle shape and inlet gas velocity on raceway evolution and heat transfer. In this paper, the coupled computational fluid dynamics (CFD) and discrete element method (DEM) scheme is used to investigate the microstructure and heat transfer characteristics in a blast furnace (BF) raceway. The impact of gas velocity and particle shape on raceway evolution, microstructure characteristics, and particle temperature and voidage distributions is comprehensively explored based on the voidage change caused by the consumption of coke particles. Numerical results show that the oblate ellipsoidal particle system possesses higher average voidage in the original packing state and implements the faster burden descending rate than the prolate one under the same inlet velocity. For the non-spherical particle systems, larger contact forces exist in the oblate ellipsoidal particle system while the contact forces in the prolate ellipsoidal particle system are smaller. More uniform temperature distribution and higher average voidage can be caused by higher inlet gas velocities. Meanwhile, more prolate ellipsoidal particles are consumed than oblate ones under the same inlet velocity. These findings could be beneficial for understanding the kinetic and thermodynamic behaviors of particulate system within a BF raceway. [Display omitted]</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.ijheatmasstransfer.2020.119577</doi></addata></record>
fulltext fulltext
identifier ISSN: 0017-9310
ispartof International journal of heat and mass transfer, 2020-06, Vol.153, p.119577, Article 119577
issn 0017-9310
1879-2189
language eng
recordid cdi_proquest_journals_2438721741
source Access via ScienceDirect (Elsevier)
subjects Blast furnace gas
Blast furnace practice
Blast furnace raceway
CFD-DEM simulation
Computational fluid dynamics
Contact force
Discrete element method
Dynamic behaviours
Ellipsoidal particle
Heat transfer
Microstructure
Particle shape
Temperature distribution
title Numerical investigation on the mutual interaction between heat transfer and non-spherical particle dynamics in the blast furnace raceway
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T18%3A18%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Numerical%20investigation%20on%20the%20mutual%20interaction%20between%20heat%20transfer%20and%20non-spherical%20particle%20dynamics%20in%20the%20blast%20furnace%20raceway&rft.jtitle=International%20journal%20of%20heat%20and%20mass%20transfer&rft.au=Wei,%20Guangchao&rft.date=2020-06&rft.volume=153&rft.spage=119577&rft.pages=119577-&rft.artnum=119577&rft.issn=0017-9310&rft.eissn=1879-2189&rft_id=info:doi/10.1016/j.ijheatmasstransfer.2020.119577&rft_dat=%3Cproquest_cross%3E2438721741%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2438721741&rft_id=info:pmid/&rft_els_id=S0017931019349890&rfr_iscdi=true