Improved Iterative Learning Control Strategy for Surface-Mounted Permanent Magnet Synchronous Motor Drives

In this article, an improved iterative learning control (ILC), which significantly enhances the speed tracking performance in the transient and steady state for a surface-mounted permanent magnet synchronous motor (SPMSM) drive, is proposed. The proposed ILC encapsulates two control terms: the feedb...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on industrial electronics (1982) 2020-12, Vol.67 (12), p.10134-10144
Hauptverfasser: Mohammed, Sadeq Ali Qasem, Nguyen, Anh Tuan, Choi, Han Ho, Jung, Jin-Woo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 10144
container_issue 12
container_start_page 10134
container_title IEEE transactions on industrial electronics (1982)
container_volume 67
creator Mohammed, Sadeq Ali Qasem
Nguyen, Anh Tuan
Choi, Han Ho
Jung, Jin-Woo
description In this article, an improved iterative learning control (ILC), which significantly enhances the speed tracking performance in the transient and steady state for a surface-mounted permanent magnet synchronous motor (SPMSM) drive, is proposed. The proposed ILC encapsulates two control terms: the feedback linearization control terms force the speed error to approach zero, and the iterative learning control terms (ILCTs) improve the performance of the control inputs based on the stored data such as previous speed error and previous control input. Unlike the conventional feedback linearization control (FLC), the proposed ILC does not require the exact information of the SPMSM parameters, significantly rejects the periodic and nonperiodic disturbances, and efficiently provides an enhanced speed tracking performance owing to the included ILCTs. Besides, its stability is proven by showing that the speed tracking error asymptotically goes to zero. In comparative studies, the proposed method offers the better transient performance (e.g., faster transient response and smaller overshoot) and steady-state performance (i.e., smaller steady-state error) than the conventional FLC under load and speed step changes. To prove the practicability of the proposed scheme, the proposed ILC is simulated and implemented on a MATLAB/Simulink software and a prototype SPMSM test-bed using TI TMS320F28335 digital signal processor, respectively.
doi_str_mv 10.1109/TIE.2019.2962454
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2438689020</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8948267</ieee_id><sourcerecordid>2438689020</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-553bd529c7117488bc37ea81506af8c68a3615f358ffbb9e9cdcdb2f25b787d73</originalsourceid><addsrcrecordid>eNo9kMFLwzAUh4MoOKd3wUvAc2eSNk1ylDm1sKGweS5p-jI7tmSm6WD_vZENT-_wft_v8T6E7imZUErU06qaTRihasJUyQpeXKAR5VxkShXyEo0IEzIjpCiv0U3fbwihBad8hDbVbh_8AVpcRQg6dgfAc9DBdW6Np97F4Ld4GdMG1kdsfcDLIVhtIFv4wcXEfULYaQcu4oVeO4h4eXTmO3jnhx4vfEzIS0i1_S26snrbw915jtHX62w1fc_mH2_V9HmeGaZozDjPm5YzZQSlopCyMbkALSknpbbSlFLnJeU259LaplGgTGvahlnGGyFFK_Ixejz1psd-BuhjvfFDcOlkzYpcllIRRlKKnFIm-L4PYOt96HY6HGtK6j-jdTJa_xmtz0YT8nBCOgD4j8skmJUi_wU_AHN1</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2438689020</pqid></control><display><type>article</type><title>Improved Iterative Learning Control Strategy for Surface-Mounted Permanent Magnet Synchronous Motor Drives</title><source>IEEE Electronic Library (IEL)</source><creator>Mohammed, Sadeq Ali Qasem ; Nguyen, Anh Tuan ; Choi, Han Ho ; Jung, Jin-Woo</creator><creatorcontrib>Mohammed, Sadeq Ali Qasem ; Nguyen, Anh Tuan ; Choi, Han Ho ; Jung, Jin-Woo</creatorcontrib><description>In this article, an improved iterative learning control (ILC), which significantly enhances the speed tracking performance in the transient and steady state for a surface-mounted permanent magnet synchronous motor (SPMSM) drive, is proposed. The proposed ILC encapsulates two control terms: the feedback linearization control terms force the speed error to approach zero, and the iterative learning control terms (ILCTs) improve the performance of the control inputs based on the stored data such as previous speed error and previous control input. Unlike the conventional feedback linearization control (FLC), the proposed ILC does not require the exact information of the SPMSM parameters, significantly rejects the periodic and nonperiodic disturbances, and efficiently provides an enhanced speed tracking performance owing to the included ILCTs. Besides, its stability is proven by showing that the speed tracking error asymptotically goes to zero. In comparative studies, the proposed method offers the better transient performance (e.g., faster transient response and smaller overshoot) and steady-state performance (i.e., smaller steady-state error) than the conventional FLC under load and speed step changes. To prove the practicability of the proposed scheme, the proposed ILC is simulated and implemented on a MATLAB/Simulink software and a prototype SPMSM test-bed using TI TMS320F28335 digital signal processor, respectively.</description><identifier>ISSN: 0278-0046</identifier><identifier>EISSN: 1557-9948</identifier><identifier>DOI: 10.1109/TIE.2019.2962454</identifier><identifier>CODEN: ITIED6</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Comparative studies ; Control systems ; Digital signal processors ; Dynamics ; Feedback linearization ; Feedback linearization control (FLC) ; Iterative learning control ; iterative learning control (ILC) ; Learning ; Mathematical model ; Microprocessors ; Performance enhancement ; periodic and nonperiodic disturbances ; Permanent magnet motors ; Permanent magnets ; Signal processing ; speed tracking performance ; Stators ; Steady state ; surface-mounted permanent magnet synchronous motor (SPMSM) ; Synchronous motors ; Tracking errors ; Transient analysis ; Transient performance ; Transient response</subject><ispartof>IEEE transactions on industrial electronics (1982), 2020-12, Vol.67 (12), p.10134-10144</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-553bd529c7117488bc37ea81506af8c68a3615f358ffbb9e9cdcdb2f25b787d73</citedby><cites>FETCH-LOGICAL-c291t-553bd529c7117488bc37ea81506af8c68a3615f358ffbb9e9cdcdb2f25b787d73</cites><orcidid>0000-0003-3429-5049 ; 0000-0003-0940-9876 ; 0000-0001-6631-3745</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8948267$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8948267$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Mohammed, Sadeq Ali Qasem</creatorcontrib><creatorcontrib>Nguyen, Anh Tuan</creatorcontrib><creatorcontrib>Choi, Han Ho</creatorcontrib><creatorcontrib>Jung, Jin-Woo</creatorcontrib><title>Improved Iterative Learning Control Strategy for Surface-Mounted Permanent Magnet Synchronous Motor Drives</title><title>IEEE transactions on industrial electronics (1982)</title><addtitle>TIE</addtitle><description>In this article, an improved iterative learning control (ILC), which significantly enhances the speed tracking performance in the transient and steady state for a surface-mounted permanent magnet synchronous motor (SPMSM) drive, is proposed. The proposed ILC encapsulates two control terms: the feedback linearization control terms force the speed error to approach zero, and the iterative learning control terms (ILCTs) improve the performance of the control inputs based on the stored data such as previous speed error and previous control input. Unlike the conventional feedback linearization control (FLC), the proposed ILC does not require the exact information of the SPMSM parameters, significantly rejects the periodic and nonperiodic disturbances, and efficiently provides an enhanced speed tracking performance owing to the included ILCTs. Besides, its stability is proven by showing that the speed tracking error asymptotically goes to zero. In comparative studies, the proposed method offers the better transient performance (e.g., faster transient response and smaller overshoot) and steady-state performance (i.e., smaller steady-state error) than the conventional FLC under load and speed step changes. To prove the practicability of the proposed scheme, the proposed ILC is simulated and implemented on a MATLAB/Simulink software and a prototype SPMSM test-bed using TI TMS320F28335 digital signal processor, respectively.</description><subject>Comparative studies</subject><subject>Control systems</subject><subject>Digital signal processors</subject><subject>Dynamics</subject><subject>Feedback linearization</subject><subject>Feedback linearization control (FLC)</subject><subject>Iterative learning control</subject><subject>iterative learning control (ILC)</subject><subject>Learning</subject><subject>Mathematical model</subject><subject>Microprocessors</subject><subject>Performance enhancement</subject><subject>periodic and nonperiodic disturbances</subject><subject>Permanent magnet motors</subject><subject>Permanent magnets</subject><subject>Signal processing</subject><subject>speed tracking performance</subject><subject>Stators</subject><subject>Steady state</subject><subject>surface-mounted permanent magnet synchronous motor (SPMSM)</subject><subject>Synchronous motors</subject><subject>Tracking errors</subject><subject>Transient analysis</subject><subject>Transient performance</subject><subject>Transient response</subject><issn>0278-0046</issn><issn>1557-9948</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kMFLwzAUh4MoOKd3wUvAc2eSNk1ylDm1sKGweS5p-jI7tmSm6WD_vZENT-_wft_v8T6E7imZUErU06qaTRihasJUyQpeXKAR5VxkShXyEo0IEzIjpCiv0U3fbwihBad8hDbVbh_8AVpcRQg6dgfAc9DBdW6Np97F4Ld4GdMG1kdsfcDLIVhtIFv4wcXEfULYaQcu4oVeO4h4eXTmO3jnhx4vfEzIS0i1_S26snrbw915jtHX62w1fc_mH2_V9HmeGaZozDjPm5YzZQSlopCyMbkALSknpbbSlFLnJeU259LaplGgTGvahlnGGyFFK_Ixejz1psd-BuhjvfFDcOlkzYpcllIRRlKKnFIm-L4PYOt96HY6HGtK6j-jdTJa_xmtz0YT8nBCOgD4j8skmJUi_wU_AHN1</recordid><startdate>20201201</startdate><enddate>20201201</enddate><creator>Mohammed, Sadeq Ali Qasem</creator><creator>Nguyen, Anh Tuan</creator><creator>Choi, Han Ho</creator><creator>Jung, Jin-Woo</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-3429-5049</orcidid><orcidid>https://orcid.org/0000-0003-0940-9876</orcidid><orcidid>https://orcid.org/0000-0001-6631-3745</orcidid></search><sort><creationdate>20201201</creationdate><title>Improved Iterative Learning Control Strategy for Surface-Mounted Permanent Magnet Synchronous Motor Drives</title><author>Mohammed, Sadeq Ali Qasem ; Nguyen, Anh Tuan ; Choi, Han Ho ; Jung, Jin-Woo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-553bd529c7117488bc37ea81506af8c68a3615f358ffbb9e9cdcdb2f25b787d73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Comparative studies</topic><topic>Control systems</topic><topic>Digital signal processors</topic><topic>Dynamics</topic><topic>Feedback linearization</topic><topic>Feedback linearization control (FLC)</topic><topic>Iterative learning control</topic><topic>iterative learning control (ILC)</topic><topic>Learning</topic><topic>Mathematical model</topic><topic>Microprocessors</topic><topic>Performance enhancement</topic><topic>periodic and nonperiodic disturbances</topic><topic>Permanent magnet motors</topic><topic>Permanent magnets</topic><topic>Signal processing</topic><topic>speed tracking performance</topic><topic>Stators</topic><topic>Steady state</topic><topic>surface-mounted permanent magnet synchronous motor (SPMSM)</topic><topic>Synchronous motors</topic><topic>Tracking errors</topic><topic>Transient analysis</topic><topic>Transient performance</topic><topic>Transient response</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mohammed, Sadeq Ali Qasem</creatorcontrib><creatorcontrib>Nguyen, Anh Tuan</creatorcontrib><creatorcontrib>Choi, Han Ho</creatorcontrib><creatorcontrib>Jung, Jin-Woo</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on industrial electronics (1982)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Mohammed, Sadeq Ali Qasem</au><au>Nguyen, Anh Tuan</au><au>Choi, Han Ho</au><au>Jung, Jin-Woo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improved Iterative Learning Control Strategy for Surface-Mounted Permanent Magnet Synchronous Motor Drives</atitle><jtitle>IEEE transactions on industrial electronics (1982)</jtitle><stitle>TIE</stitle><date>2020-12-01</date><risdate>2020</risdate><volume>67</volume><issue>12</issue><spage>10134</spage><epage>10144</epage><pages>10134-10144</pages><issn>0278-0046</issn><eissn>1557-9948</eissn><coden>ITIED6</coden><abstract>In this article, an improved iterative learning control (ILC), which significantly enhances the speed tracking performance in the transient and steady state for a surface-mounted permanent magnet synchronous motor (SPMSM) drive, is proposed. The proposed ILC encapsulates two control terms: the feedback linearization control terms force the speed error to approach zero, and the iterative learning control terms (ILCTs) improve the performance of the control inputs based on the stored data such as previous speed error and previous control input. Unlike the conventional feedback linearization control (FLC), the proposed ILC does not require the exact information of the SPMSM parameters, significantly rejects the periodic and nonperiodic disturbances, and efficiently provides an enhanced speed tracking performance owing to the included ILCTs. Besides, its stability is proven by showing that the speed tracking error asymptotically goes to zero. In comparative studies, the proposed method offers the better transient performance (e.g., faster transient response and smaller overshoot) and steady-state performance (i.e., smaller steady-state error) than the conventional FLC under load and speed step changes. To prove the practicability of the proposed scheme, the proposed ILC is simulated and implemented on a MATLAB/Simulink software and a prototype SPMSM test-bed using TI TMS320F28335 digital signal processor, respectively.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIE.2019.2962454</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-3429-5049</orcidid><orcidid>https://orcid.org/0000-0003-0940-9876</orcidid><orcidid>https://orcid.org/0000-0001-6631-3745</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0278-0046
ispartof IEEE transactions on industrial electronics (1982), 2020-12, Vol.67 (12), p.10134-10144
issn 0278-0046
1557-9948
language eng
recordid cdi_proquest_journals_2438689020
source IEEE Electronic Library (IEL)
subjects Comparative studies
Control systems
Digital signal processors
Dynamics
Feedback linearization
Feedback linearization control (FLC)
Iterative learning control
iterative learning control (ILC)
Learning
Mathematical model
Microprocessors
Performance enhancement
periodic and nonperiodic disturbances
Permanent magnet motors
Permanent magnets
Signal processing
speed tracking performance
Stators
Steady state
surface-mounted permanent magnet synchronous motor (SPMSM)
Synchronous motors
Tracking errors
Transient analysis
Transient performance
Transient response
title Improved Iterative Learning Control Strategy for Surface-Mounted Permanent Magnet Synchronous Motor Drives
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T02%3A50%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improved%20Iterative%20Learning%20Control%20Strategy%20for%20Surface-Mounted%20Permanent%20Magnet%20Synchronous%20Motor%20Drives&rft.jtitle=IEEE%20transactions%20on%20industrial%20electronics%20(1982)&rft.au=Mohammed,%20Sadeq%20Ali%20Qasem&rft.date=2020-12-01&rft.volume=67&rft.issue=12&rft.spage=10134&rft.epage=10144&rft.pages=10134-10144&rft.issn=0278-0046&rft.eissn=1557-9948&rft.coden=ITIED6&rft_id=info:doi/10.1109/TIE.2019.2962454&rft_dat=%3Cproquest_RIE%3E2438689020%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2438689020&rft_id=info:pmid/&rft_ieee_id=8948267&rfr_iscdi=true