Improved Iterative Learning Control Strategy for Surface-Mounted Permanent Magnet Synchronous Motor Drives
In this article, an improved iterative learning control (ILC), which significantly enhances the speed tracking performance in the transient and steady state for a surface-mounted permanent magnet synchronous motor (SPMSM) drive, is proposed. The proposed ILC encapsulates two control terms: the feedb...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on industrial electronics (1982) 2020-12, Vol.67 (12), p.10134-10144 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 10144 |
---|---|
container_issue | 12 |
container_start_page | 10134 |
container_title | IEEE transactions on industrial electronics (1982) |
container_volume | 67 |
creator | Mohammed, Sadeq Ali Qasem Nguyen, Anh Tuan Choi, Han Ho Jung, Jin-Woo |
description | In this article, an improved iterative learning control (ILC), which significantly enhances the speed tracking performance in the transient and steady state for a surface-mounted permanent magnet synchronous motor (SPMSM) drive, is proposed. The proposed ILC encapsulates two control terms: the feedback linearization control terms force the speed error to approach zero, and the iterative learning control terms (ILCTs) improve the performance of the control inputs based on the stored data such as previous speed error and previous control input. Unlike the conventional feedback linearization control (FLC), the proposed ILC does not require the exact information of the SPMSM parameters, significantly rejects the periodic and nonperiodic disturbances, and efficiently provides an enhanced speed tracking performance owing to the included ILCTs. Besides, its stability is proven by showing that the speed tracking error asymptotically goes to zero. In comparative studies, the proposed method offers the better transient performance (e.g., faster transient response and smaller overshoot) and steady-state performance (i.e., smaller steady-state error) than the conventional FLC under load and speed step changes. To prove the practicability of the proposed scheme, the proposed ILC is simulated and implemented on a MATLAB/Simulink software and a prototype SPMSM test-bed using TI TMS320F28335 digital signal processor, respectively. |
doi_str_mv | 10.1109/TIE.2019.2962454 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2438689020</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8948267</ieee_id><sourcerecordid>2438689020</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-553bd529c7117488bc37ea81506af8c68a3615f358ffbb9e9cdcdb2f25b787d73</originalsourceid><addsrcrecordid>eNo9kMFLwzAUh4MoOKd3wUvAc2eSNk1ylDm1sKGweS5p-jI7tmSm6WD_vZENT-_wft_v8T6E7imZUErU06qaTRihasJUyQpeXKAR5VxkShXyEo0IEzIjpCiv0U3fbwihBad8hDbVbh_8AVpcRQg6dgfAc9DBdW6Np97F4Ld4GdMG1kdsfcDLIVhtIFv4wcXEfULYaQcu4oVeO4h4eXTmO3jnhx4vfEzIS0i1_S26snrbw915jtHX62w1fc_mH2_V9HmeGaZozDjPm5YzZQSlopCyMbkALSknpbbSlFLnJeU259LaplGgTGvahlnGGyFFK_Ixejz1psd-BuhjvfFDcOlkzYpcllIRRlKKnFIm-L4PYOt96HY6HGtK6j-jdTJa_xmtz0YT8nBCOgD4j8skmJUi_wU_AHN1</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2438689020</pqid></control><display><type>article</type><title>Improved Iterative Learning Control Strategy for Surface-Mounted Permanent Magnet Synchronous Motor Drives</title><source>IEEE Electronic Library (IEL)</source><creator>Mohammed, Sadeq Ali Qasem ; Nguyen, Anh Tuan ; Choi, Han Ho ; Jung, Jin-Woo</creator><creatorcontrib>Mohammed, Sadeq Ali Qasem ; Nguyen, Anh Tuan ; Choi, Han Ho ; Jung, Jin-Woo</creatorcontrib><description>In this article, an improved iterative learning control (ILC), which significantly enhances the speed tracking performance in the transient and steady state for a surface-mounted permanent magnet synchronous motor (SPMSM) drive, is proposed. The proposed ILC encapsulates two control terms: the feedback linearization control terms force the speed error to approach zero, and the iterative learning control terms (ILCTs) improve the performance of the control inputs based on the stored data such as previous speed error and previous control input. Unlike the conventional feedback linearization control (FLC), the proposed ILC does not require the exact information of the SPMSM parameters, significantly rejects the periodic and nonperiodic disturbances, and efficiently provides an enhanced speed tracking performance owing to the included ILCTs. Besides, its stability is proven by showing that the speed tracking error asymptotically goes to zero. In comparative studies, the proposed method offers the better transient performance (e.g., faster transient response and smaller overshoot) and steady-state performance (i.e., smaller steady-state error) than the conventional FLC under load and speed step changes. To prove the practicability of the proposed scheme, the proposed ILC is simulated and implemented on a MATLAB/Simulink software and a prototype SPMSM test-bed using TI TMS320F28335 digital signal processor, respectively.</description><identifier>ISSN: 0278-0046</identifier><identifier>EISSN: 1557-9948</identifier><identifier>DOI: 10.1109/TIE.2019.2962454</identifier><identifier>CODEN: ITIED6</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Comparative studies ; Control systems ; Digital signal processors ; Dynamics ; Feedback linearization ; Feedback linearization control (FLC) ; Iterative learning control ; iterative learning control (ILC) ; Learning ; Mathematical model ; Microprocessors ; Performance enhancement ; periodic and nonperiodic disturbances ; Permanent magnet motors ; Permanent magnets ; Signal processing ; speed tracking performance ; Stators ; Steady state ; surface-mounted permanent magnet synchronous motor (SPMSM) ; Synchronous motors ; Tracking errors ; Transient analysis ; Transient performance ; Transient response</subject><ispartof>IEEE transactions on industrial electronics (1982), 2020-12, Vol.67 (12), p.10134-10144</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-553bd529c7117488bc37ea81506af8c68a3615f358ffbb9e9cdcdb2f25b787d73</citedby><cites>FETCH-LOGICAL-c291t-553bd529c7117488bc37ea81506af8c68a3615f358ffbb9e9cdcdb2f25b787d73</cites><orcidid>0000-0003-3429-5049 ; 0000-0003-0940-9876 ; 0000-0001-6631-3745</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8948267$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8948267$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Mohammed, Sadeq Ali Qasem</creatorcontrib><creatorcontrib>Nguyen, Anh Tuan</creatorcontrib><creatorcontrib>Choi, Han Ho</creatorcontrib><creatorcontrib>Jung, Jin-Woo</creatorcontrib><title>Improved Iterative Learning Control Strategy for Surface-Mounted Permanent Magnet Synchronous Motor Drives</title><title>IEEE transactions on industrial electronics (1982)</title><addtitle>TIE</addtitle><description>In this article, an improved iterative learning control (ILC), which significantly enhances the speed tracking performance in the transient and steady state for a surface-mounted permanent magnet synchronous motor (SPMSM) drive, is proposed. The proposed ILC encapsulates two control terms: the feedback linearization control terms force the speed error to approach zero, and the iterative learning control terms (ILCTs) improve the performance of the control inputs based on the stored data such as previous speed error and previous control input. Unlike the conventional feedback linearization control (FLC), the proposed ILC does not require the exact information of the SPMSM parameters, significantly rejects the periodic and nonperiodic disturbances, and efficiently provides an enhanced speed tracking performance owing to the included ILCTs. Besides, its stability is proven by showing that the speed tracking error asymptotically goes to zero. In comparative studies, the proposed method offers the better transient performance (e.g., faster transient response and smaller overshoot) and steady-state performance (i.e., smaller steady-state error) than the conventional FLC under load and speed step changes. To prove the practicability of the proposed scheme, the proposed ILC is simulated and implemented on a MATLAB/Simulink software and a prototype SPMSM test-bed using TI TMS320F28335 digital signal processor, respectively.</description><subject>Comparative studies</subject><subject>Control systems</subject><subject>Digital signal processors</subject><subject>Dynamics</subject><subject>Feedback linearization</subject><subject>Feedback linearization control (FLC)</subject><subject>Iterative learning control</subject><subject>iterative learning control (ILC)</subject><subject>Learning</subject><subject>Mathematical model</subject><subject>Microprocessors</subject><subject>Performance enhancement</subject><subject>periodic and nonperiodic disturbances</subject><subject>Permanent magnet motors</subject><subject>Permanent magnets</subject><subject>Signal processing</subject><subject>speed tracking performance</subject><subject>Stators</subject><subject>Steady state</subject><subject>surface-mounted permanent magnet synchronous motor (SPMSM)</subject><subject>Synchronous motors</subject><subject>Tracking errors</subject><subject>Transient analysis</subject><subject>Transient performance</subject><subject>Transient response</subject><issn>0278-0046</issn><issn>1557-9948</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kMFLwzAUh4MoOKd3wUvAc2eSNk1ylDm1sKGweS5p-jI7tmSm6WD_vZENT-_wft_v8T6E7imZUErU06qaTRihasJUyQpeXKAR5VxkShXyEo0IEzIjpCiv0U3fbwihBad8hDbVbh_8AVpcRQg6dgfAc9DBdW6Np97F4Ld4GdMG1kdsfcDLIVhtIFv4wcXEfULYaQcu4oVeO4h4eXTmO3jnhx4vfEzIS0i1_S26snrbw915jtHX62w1fc_mH2_V9HmeGaZozDjPm5YzZQSlopCyMbkALSknpbbSlFLnJeU259LaplGgTGvahlnGGyFFK_Ixejz1psd-BuhjvfFDcOlkzYpcllIRRlKKnFIm-L4PYOt96HY6HGtK6j-jdTJa_xmtz0YT8nBCOgD4j8skmJUi_wU_AHN1</recordid><startdate>20201201</startdate><enddate>20201201</enddate><creator>Mohammed, Sadeq Ali Qasem</creator><creator>Nguyen, Anh Tuan</creator><creator>Choi, Han Ho</creator><creator>Jung, Jin-Woo</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-3429-5049</orcidid><orcidid>https://orcid.org/0000-0003-0940-9876</orcidid><orcidid>https://orcid.org/0000-0001-6631-3745</orcidid></search><sort><creationdate>20201201</creationdate><title>Improved Iterative Learning Control Strategy for Surface-Mounted Permanent Magnet Synchronous Motor Drives</title><author>Mohammed, Sadeq Ali Qasem ; Nguyen, Anh Tuan ; Choi, Han Ho ; Jung, Jin-Woo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-553bd529c7117488bc37ea81506af8c68a3615f358ffbb9e9cdcdb2f25b787d73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Comparative studies</topic><topic>Control systems</topic><topic>Digital signal processors</topic><topic>Dynamics</topic><topic>Feedback linearization</topic><topic>Feedback linearization control (FLC)</topic><topic>Iterative learning control</topic><topic>iterative learning control (ILC)</topic><topic>Learning</topic><topic>Mathematical model</topic><topic>Microprocessors</topic><topic>Performance enhancement</topic><topic>periodic and nonperiodic disturbances</topic><topic>Permanent magnet motors</topic><topic>Permanent magnets</topic><topic>Signal processing</topic><topic>speed tracking performance</topic><topic>Stators</topic><topic>Steady state</topic><topic>surface-mounted permanent magnet synchronous motor (SPMSM)</topic><topic>Synchronous motors</topic><topic>Tracking errors</topic><topic>Transient analysis</topic><topic>Transient performance</topic><topic>Transient response</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mohammed, Sadeq Ali Qasem</creatorcontrib><creatorcontrib>Nguyen, Anh Tuan</creatorcontrib><creatorcontrib>Choi, Han Ho</creatorcontrib><creatorcontrib>Jung, Jin-Woo</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on industrial electronics (1982)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Mohammed, Sadeq Ali Qasem</au><au>Nguyen, Anh Tuan</au><au>Choi, Han Ho</au><au>Jung, Jin-Woo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improved Iterative Learning Control Strategy for Surface-Mounted Permanent Magnet Synchronous Motor Drives</atitle><jtitle>IEEE transactions on industrial electronics (1982)</jtitle><stitle>TIE</stitle><date>2020-12-01</date><risdate>2020</risdate><volume>67</volume><issue>12</issue><spage>10134</spage><epage>10144</epage><pages>10134-10144</pages><issn>0278-0046</issn><eissn>1557-9948</eissn><coden>ITIED6</coden><abstract>In this article, an improved iterative learning control (ILC), which significantly enhances the speed tracking performance in the transient and steady state for a surface-mounted permanent magnet synchronous motor (SPMSM) drive, is proposed. The proposed ILC encapsulates two control terms: the feedback linearization control terms force the speed error to approach zero, and the iterative learning control terms (ILCTs) improve the performance of the control inputs based on the stored data such as previous speed error and previous control input. Unlike the conventional feedback linearization control (FLC), the proposed ILC does not require the exact information of the SPMSM parameters, significantly rejects the periodic and nonperiodic disturbances, and efficiently provides an enhanced speed tracking performance owing to the included ILCTs. Besides, its stability is proven by showing that the speed tracking error asymptotically goes to zero. In comparative studies, the proposed method offers the better transient performance (e.g., faster transient response and smaller overshoot) and steady-state performance (i.e., smaller steady-state error) than the conventional FLC under load and speed step changes. To prove the practicability of the proposed scheme, the proposed ILC is simulated and implemented on a MATLAB/Simulink software and a prototype SPMSM test-bed using TI TMS320F28335 digital signal processor, respectively.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIE.2019.2962454</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-3429-5049</orcidid><orcidid>https://orcid.org/0000-0003-0940-9876</orcidid><orcidid>https://orcid.org/0000-0001-6631-3745</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0278-0046 |
ispartof | IEEE transactions on industrial electronics (1982), 2020-12, Vol.67 (12), p.10134-10144 |
issn | 0278-0046 1557-9948 |
language | eng |
recordid | cdi_proquest_journals_2438689020 |
source | IEEE Electronic Library (IEL) |
subjects | Comparative studies Control systems Digital signal processors Dynamics Feedback linearization Feedback linearization control (FLC) Iterative learning control iterative learning control (ILC) Learning Mathematical model Microprocessors Performance enhancement periodic and nonperiodic disturbances Permanent magnet motors Permanent magnets Signal processing speed tracking performance Stators Steady state surface-mounted permanent magnet synchronous motor (SPMSM) Synchronous motors Tracking errors Transient analysis Transient performance Transient response |
title | Improved Iterative Learning Control Strategy for Surface-Mounted Permanent Magnet Synchronous Motor Drives |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T02%3A50%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improved%20Iterative%20Learning%20Control%20Strategy%20for%20Surface-Mounted%20Permanent%20Magnet%20Synchronous%20Motor%20Drives&rft.jtitle=IEEE%20transactions%20on%20industrial%20electronics%20(1982)&rft.au=Mohammed,%20Sadeq%20Ali%20Qasem&rft.date=2020-12-01&rft.volume=67&rft.issue=12&rft.spage=10134&rft.epage=10144&rft.pages=10134-10144&rft.issn=0278-0046&rft.eissn=1557-9948&rft.coden=ITIED6&rft_id=info:doi/10.1109/TIE.2019.2962454&rft_dat=%3Cproquest_RIE%3E2438689020%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2438689020&rft_id=info:pmid/&rft_ieee_id=8948267&rfr_iscdi=true |