Retrieval of Melt Pond Fraction over Arctic Sea Ice during 2000-2019 Using an Ensemble-Based Deep Neural Network

The accurate knowledge of variations of melt ponds is important for understanding the Arctic energy budget due to its albedo-transmittance-melt feedback. In this study, we develop and validate a new method for retrieving melt pond fraction (MPF) over Arctic sea ice using all seven spectral bands of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Remote sensing (Basel, Switzerland) Switzerland), 2020-09, Vol.12 (17), p.2746, Article 2746
Hauptverfasser: Ding, Yifan, Cheng, Xiao, Liu, Jiping, Hui, Fengming, Wang, Zhenzhan, Chen, Shengzhe
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 17
container_start_page 2746
container_title Remote sensing (Basel, Switzerland)
container_volume 12
creator Ding, Yifan
Cheng, Xiao
Liu, Jiping
Hui, Fengming
Wang, Zhenzhan
Chen, Shengzhe
description The accurate knowledge of variations of melt ponds is important for understanding the Arctic energy budget due to its albedo-transmittance-melt feedback. In this study, we develop and validate a new method for retrieving melt pond fraction (MPF) over Arctic sea ice using all seven spectral bands of MODIS surface reflectance. We construct a robust ensemble-based deep neural network and use in-situ MPF observations collected from multiple sources as the target data to train the network. We examine the potential influence of using sea ice concentration (SIC) from different sources as additional target data (besides MPF) on the MPF retrieval. The results suggest that the inclusion of SIC has a minor impact on MPF retrieval. Based on this, we create a new MPF data from 2000 to 2019 (the longest data in our knowledge). The validation shows that our new MPF data is in good agreement with the observations. We further compare the new MPF dataset with the previously published MPF datasets. It is found that the evolution of the new MPF is similar to previous MPF data throughout the melting season, but the new MPF data is in relatively better agreement with the observations in terms of correlations and root mean squared errors (RMSE), and also has the smallest value in the first half of the melting season.
doi_str_mv 10.3390/rs12172746
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2438360009</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_1849ea4c99aa469293a20ee80ffa60eb</doaj_id><sourcerecordid>2438360009</sourcerecordid><originalsourceid>FETCH-LOGICAL-c361t-eed3c0c1ab7ac01cca1a8ef9aad9fbe94d023f6e2650faa559bc42e10b9f4033</originalsourceid><addsrcrecordid>eNqNkctOxCAUhhujiUZn4xOQuNNUuQ0tSx1vk4yXeFmTU3owHWsZodX49jKOUZeygUM-Pjj8WbbL6KEQmh6FyDgreCHVWrbFacFzyTVf_7PezEYxzmkaQjBN5Va2uMM-NPgGLfGOXGHbk1vf1eQ8gO0b3xH_hoEch1RYco9AphZJPYSmeyI8eXJOmSaPcVlDR866iC9Vi_kJRKzJKeKCXOMQkv4a-3cfnneyDQdtxNH3vJ09nJ89TC7z2c3FdHI8y61QrM8Ra2GpZVAVYCmzFhiU6DRArV2FWtaUC6eQqzF1AOOxrqzkyGilnUzdbWfTlbb2MDeL0LxA-DAeGvO14cOTgZB6atGwUmoEaXWSS6W5FsApYkmdA0WxSq69lWsR_OuAsTdzP4Quvd5wKUqh0j_oRO2vKBt8jAHdz62MmmU-5jefBB-s4HesvIu2wc7iz4HkGytdUFUuo2KJLv9PT5oelslN_ND14hNYnqGI</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2438360009</pqid></control><display><type>article</type><title>Retrieval of Melt Pond Fraction over Arctic Sea Ice during 2000-2019 Using an Ensemble-Based Deep Neural Network</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><creator>Ding, Yifan ; Cheng, Xiao ; Liu, Jiping ; Hui, Fengming ; Wang, Zhenzhan ; Chen, Shengzhe</creator><creatorcontrib>Ding, Yifan ; Cheng, Xiao ; Liu, Jiping ; Hui, Fengming ; Wang, Zhenzhan ; Chen, Shengzhe</creatorcontrib><description>The accurate knowledge of variations of melt ponds is important for understanding the Arctic energy budget due to its albedo-transmittance-melt feedback. In this study, we develop and validate a new method for retrieving melt pond fraction (MPF) over Arctic sea ice using all seven spectral bands of MODIS surface reflectance. We construct a robust ensemble-based deep neural network and use in-situ MPF observations collected from multiple sources as the target data to train the network. We examine the potential influence of using sea ice concentration (SIC) from different sources as additional target data (besides MPF) on the MPF retrieval. The results suggest that the inclusion of SIC has a minor impact on MPF retrieval. Based on this, we create a new MPF data from 2000 to 2019 (the longest data in our knowledge). The validation shows that our new MPF data is in good agreement with the observations. We further compare the new MPF dataset with the previously published MPF datasets. It is found that the evolution of the new MPF is similar to previous MPF data throughout the melting season, but the new MPF data is in relatively better agreement with the observations in terms of correlations and root mean squared errors (RMSE), and also has the smallest value in the first half of the melting season.</description><identifier>ISSN: 2072-4292</identifier><identifier>EISSN: 2072-4292</identifier><identifier>DOI: 10.3390/rs12172746</identifier><language>eng</language><publisher>BASEL: Mdpi</publisher><subject>Albedo ; Algorithms ; Arctic sea ice ; Artificial neural networks ; Datasets ; deep neural network ; Energy budget ; Environmental Sciences ; Environmental Sciences &amp; Ecology ; Geology ; Geosciences, Multidisciplinary ; Ice ; Imaging Science &amp; Photographic Technology ; Life Sciences &amp; Biomedicine ; melt pond fraction ; Melting ; Neural networks ; Physical Sciences ; Ponds ; Remote Sensing ; Retrieval ; Science &amp; Technology ; Sea ice ; Seasons ; Spectral bands ; Summer ; Technology ; Topography ; Trends</subject><ispartof>Remote sensing (Basel, Switzerland), 2020-09, Vol.12 (17), p.2746, Article 2746</ispartof><rights>2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>12</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000569706800001</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c361t-eed3c0c1ab7ac01cca1a8ef9aad9fbe94d023f6e2650faa559bc42e10b9f4033</citedby><cites>FETCH-LOGICAL-c361t-eed3c0c1ab7ac01cca1a8ef9aad9fbe94d023f6e2650faa559bc42e10b9f4033</cites><orcidid>0000-0002-6098-844X ; 0000-0002-7275-3082</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,865,2103,2115,27928,27929</link.rule.ids></links><search><creatorcontrib>Ding, Yifan</creatorcontrib><creatorcontrib>Cheng, Xiao</creatorcontrib><creatorcontrib>Liu, Jiping</creatorcontrib><creatorcontrib>Hui, Fengming</creatorcontrib><creatorcontrib>Wang, Zhenzhan</creatorcontrib><creatorcontrib>Chen, Shengzhe</creatorcontrib><title>Retrieval of Melt Pond Fraction over Arctic Sea Ice during 2000-2019 Using an Ensemble-Based Deep Neural Network</title><title>Remote sensing (Basel, Switzerland)</title><addtitle>REMOTE SENS-BASEL</addtitle><description>The accurate knowledge of variations of melt ponds is important for understanding the Arctic energy budget due to its albedo-transmittance-melt feedback. In this study, we develop and validate a new method for retrieving melt pond fraction (MPF) over Arctic sea ice using all seven spectral bands of MODIS surface reflectance. We construct a robust ensemble-based deep neural network and use in-situ MPF observations collected from multiple sources as the target data to train the network. We examine the potential influence of using sea ice concentration (SIC) from different sources as additional target data (besides MPF) on the MPF retrieval. The results suggest that the inclusion of SIC has a minor impact on MPF retrieval. Based on this, we create a new MPF data from 2000 to 2019 (the longest data in our knowledge). The validation shows that our new MPF data is in good agreement with the observations. We further compare the new MPF dataset with the previously published MPF datasets. It is found that the evolution of the new MPF is similar to previous MPF data throughout the melting season, but the new MPF data is in relatively better agreement with the observations in terms of correlations and root mean squared errors (RMSE), and also has the smallest value in the first half of the melting season.</description><subject>Albedo</subject><subject>Algorithms</subject><subject>Arctic sea ice</subject><subject>Artificial neural networks</subject><subject>Datasets</subject><subject>deep neural network</subject><subject>Energy budget</subject><subject>Environmental Sciences</subject><subject>Environmental Sciences &amp; Ecology</subject><subject>Geology</subject><subject>Geosciences, Multidisciplinary</subject><subject>Ice</subject><subject>Imaging Science &amp; Photographic Technology</subject><subject>Life Sciences &amp; Biomedicine</subject><subject>melt pond fraction</subject><subject>Melting</subject><subject>Neural networks</subject><subject>Physical Sciences</subject><subject>Ponds</subject><subject>Remote Sensing</subject><subject>Retrieval</subject><subject>Science &amp; Technology</subject><subject>Sea ice</subject><subject>Seasons</subject><subject>Spectral bands</subject><subject>Summer</subject><subject>Technology</subject><subject>Topography</subject><subject>Trends</subject><issn>2072-4292</issn><issn>2072-4292</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AOWDO</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>DOA</sourceid><recordid>eNqNkctOxCAUhhujiUZn4xOQuNNUuQ0tSx1vk4yXeFmTU3owHWsZodX49jKOUZeygUM-Pjj8WbbL6KEQmh6FyDgreCHVWrbFacFzyTVf_7PezEYxzmkaQjBN5Va2uMM-NPgGLfGOXGHbk1vf1eQ8gO0b3xH_hoEch1RYco9AphZJPYSmeyI8eXJOmSaPcVlDR866iC9Vi_kJRKzJKeKCXOMQkv4a-3cfnneyDQdtxNH3vJ09nJ89TC7z2c3FdHI8y61QrM8Ra2GpZVAVYCmzFhiU6DRArV2FWtaUC6eQqzF1AOOxrqzkyGilnUzdbWfTlbb2MDeL0LxA-DAeGvO14cOTgZB6atGwUmoEaXWSS6W5FsApYkmdA0WxSq69lWsR_OuAsTdzP4Quvd5wKUqh0j_oRO2vKBt8jAHdz62MmmU-5jefBB-s4HesvIu2wc7iz4HkGytdUFUuo2KJLv9PT5oelslN_ND14hNYnqGI</recordid><startdate>20200901</startdate><enddate>20200901</enddate><creator>Ding, Yifan</creator><creator>Cheng, Xiao</creator><creator>Liu, Jiping</creator><creator>Hui, Fengming</creator><creator>Wang, Zhenzhan</creator><creator>Chen, Shengzhe</creator><general>Mdpi</general><general>MDPI AG</general><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SN</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PCBAR</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-6098-844X</orcidid><orcidid>https://orcid.org/0000-0002-7275-3082</orcidid></search><sort><creationdate>20200901</creationdate><title>Retrieval of Melt Pond Fraction over Arctic Sea Ice during 2000-2019 Using an Ensemble-Based Deep Neural Network</title><author>Ding, Yifan ; Cheng, Xiao ; Liu, Jiping ; Hui, Fengming ; Wang, Zhenzhan ; Chen, Shengzhe</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c361t-eed3c0c1ab7ac01cca1a8ef9aad9fbe94d023f6e2650faa559bc42e10b9f4033</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Albedo</topic><topic>Algorithms</topic><topic>Arctic sea ice</topic><topic>Artificial neural networks</topic><topic>Datasets</topic><topic>deep neural network</topic><topic>Energy budget</topic><topic>Environmental Sciences</topic><topic>Environmental Sciences &amp; Ecology</topic><topic>Geology</topic><topic>Geosciences, Multidisciplinary</topic><topic>Ice</topic><topic>Imaging Science &amp; Photographic Technology</topic><topic>Life Sciences &amp; Biomedicine</topic><topic>melt pond fraction</topic><topic>Melting</topic><topic>Neural networks</topic><topic>Physical Sciences</topic><topic>Ponds</topic><topic>Remote Sensing</topic><topic>Retrieval</topic><topic>Science &amp; Technology</topic><topic>Sea ice</topic><topic>Seasons</topic><topic>Spectral bands</topic><topic>Summer</topic><topic>Technology</topic><topic>Topography</topic><topic>Trends</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ding, Yifan</creatorcontrib><creatorcontrib>Cheng, Xiao</creatorcontrib><creatorcontrib>Liu, Jiping</creatorcontrib><creatorcontrib>Hui, Fengming</creatorcontrib><creatorcontrib>Wang, Zhenzhan</creatorcontrib><creatorcontrib>Chen, Shengzhe</creatorcontrib><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Ecology Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Remote sensing (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ding, Yifan</au><au>Cheng, Xiao</au><au>Liu, Jiping</au><au>Hui, Fengming</au><au>Wang, Zhenzhan</au><au>Chen, Shengzhe</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Retrieval of Melt Pond Fraction over Arctic Sea Ice during 2000-2019 Using an Ensemble-Based Deep Neural Network</atitle><jtitle>Remote sensing (Basel, Switzerland)</jtitle><stitle>REMOTE SENS-BASEL</stitle><date>2020-09-01</date><risdate>2020</risdate><volume>12</volume><issue>17</issue><spage>2746</spage><pages>2746-</pages><artnum>2746</artnum><issn>2072-4292</issn><eissn>2072-4292</eissn><abstract>The accurate knowledge of variations of melt ponds is important for understanding the Arctic energy budget due to its albedo-transmittance-melt feedback. In this study, we develop and validate a new method for retrieving melt pond fraction (MPF) over Arctic sea ice using all seven spectral bands of MODIS surface reflectance. We construct a robust ensemble-based deep neural network and use in-situ MPF observations collected from multiple sources as the target data to train the network. We examine the potential influence of using sea ice concentration (SIC) from different sources as additional target data (besides MPF) on the MPF retrieval. The results suggest that the inclusion of SIC has a minor impact on MPF retrieval. Based on this, we create a new MPF data from 2000 to 2019 (the longest data in our knowledge). The validation shows that our new MPF data is in good agreement with the observations. We further compare the new MPF dataset with the previously published MPF datasets. It is found that the evolution of the new MPF is similar to previous MPF data throughout the melting season, but the new MPF data is in relatively better agreement with the observations in terms of correlations and root mean squared errors (RMSE), and also has the smallest value in the first half of the melting season.</abstract><cop>BASEL</cop><pub>Mdpi</pub><doi>10.3390/rs12172746</doi><tpages>29</tpages><orcidid>https://orcid.org/0000-0002-6098-844X</orcidid><orcidid>https://orcid.org/0000-0002-7275-3082</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2072-4292
ispartof Remote sensing (Basel, Switzerland), 2020-09, Vol.12 (17), p.2746, Article 2746
issn 2072-4292
2072-4292
language eng
recordid cdi_proquest_journals_2438360009
source DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; MDPI - Multidisciplinary Digital Publishing Institute
subjects Albedo
Algorithms
Arctic sea ice
Artificial neural networks
Datasets
deep neural network
Energy budget
Environmental Sciences
Environmental Sciences & Ecology
Geology
Geosciences, Multidisciplinary
Ice
Imaging Science & Photographic Technology
Life Sciences & Biomedicine
melt pond fraction
Melting
Neural networks
Physical Sciences
Ponds
Remote Sensing
Retrieval
Science & Technology
Sea ice
Seasons
Spectral bands
Summer
Technology
Topography
Trends
title Retrieval of Melt Pond Fraction over Arctic Sea Ice during 2000-2019 Using an Ensemble-Based Deep Neural Network
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T22%3A05%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Retrieval%20of%20Melt%20Pond%20Fraction%20over%20Arctic%20Sea%20Ice%20during%202000-2019%20Using%20an%20Ensemble-Based%20Deep%20Neural%20Network&rft.jtitle=Remote%20sensing%20(Basel,%20Switzerland)&rft.au=Ding,%20Yifan&rft.date=2020-09-01&rft.volume=12&rft.issue=17&rft.spage=2746&rft.pages=2746-&rft.artnum=2746&rft.issn=2072-4292&rft.eissn=2072-4292&rft_id=info:doi/10.3390/rs12172746&rft_dat=%3Cproquest_cross%3E2438360009%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2438360009&rft_id=info:pmid/&rft_doaj_id=oai_doaj_org_article_1849ea4c99aa469293a20ee80ffa60eb&rfr_iscdi=true