Retrieval of Melt Pond Fraction over Arctic Sea Ice during 2000-2019 Using an Ensemble-Based Deep Neural Network
The accurate knowledge of variations of melt ponds is important for understanding the Arctic energy budget due to its albedo-transmittance-melt feedback. In this study, we develop and validate a new method for retrieving melt pond fraction (MPF) over Arctic sea ice using all seven spectral bands of...
Gespeichert in:
Veröffentlicht in: | Remote sensing (Basel, Switzerland) Switzerland), 2020-09, Vol.12 (17), p.2746, Article 2746 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 17 |
container_start_page | 2746 |
container_title | Remote sensing (Basel, Switzerland) |
container_volume | 12 |
creator | Ding, Yifan Cheng, Xiao Liu, Jiping Hui, Fengming Wang, Zhenzhan Chen, Shengzhe |
description | The accurate knowledge of variations of melt ponds is important for understanding the Arctic energy budget due to its albedo-transmittance-melt feedback. In this study, we develop and validate a new method for retrieving melt pond fraction (MPF) over Arctic sea ice using all seven spectral bands of MODIS surface reflectance. We construct a robust ensemble-based deep neural network and use in-situ MPF observations collected from multiple sources as the target data to train the network. We examine the potential influence of using sea ice concentration (SIC) from different sources as additional target data (besides MPF) on the MPF retrieval. The results suggest that the inclusion of SIC has a minor impact on MPF retrieval. Based on this, we create a new MPF data from 2000 to 2019 (the longest data in our knowledge). The validation shows that our new MPF data is in good agreement with the observations. We further compare the new MPF dataset with the previously published MPF datasets. It is found that the evolution of the new MPF is similar to previous MPF data throughout the melting season, but the new MPF data is in relatively better agreement with the observations in terms of correlations and root mean squared errors (RMSE), and also has the smallest value in the first half of the melting season. |
doi_str_mv | 10.3390/rs12172746 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2438360009</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_1849ea4c99aa469293a20ee80ffa60eb</doaj_id><sourcerecordid>2438360009</sourcerecordid><originalsourceid>FETCH-LOGICAL-c361t-eed3c0c1ab7ac01cca1a8ef9aad9fbe94d023f6e2650faa559bc42e10b9f4033</originalsourceid><addsrcrecordid>eNqNkctOxCAUhhujiUZn4xOQuNNUuQ0tSx1vk4yXeFmTU3owHWsZodX49jKOUZeygUM-Pjj8WbbL6KEQmh6FyDgreCHVWrbFacFzyTVf_7PezEYxzmkaQjBN5Va2uMM-NPgGLfGOXGHbk1vf1eQ8gO0b3xH_hoEch1RYco9AphZJPYSmeyI8eXJOmSaPcVlDR866iC9Vi_kJRKzJKeKCXOMQkv4a-3cfnneyDQdtxNH3vJ09nJ89TC7z2c3FdHI8y61QrM8Ra2GpZVAVYCmzFhiU6DRArV2FWtaUC6eQqzF1AOOxrqzkyGilnUzdbWfTlbb2MDeL0LxA-DAeGvO14cOTgZB6atGwUmoEaXWSS6W5FsApYkmdA0WxSq69lWsR_OuAsTdzP4Quvd5wKUqh0j_oRO2vKBt8jAHdz62MmmU-5jefBB-s4HesvIu2wc7iz4HkGytdUFUuo2KJLv9PT5oelslN_ND14hNYnqGI</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2438360009</pqid></control><display><type>article</type><title>Retrieval of Melt Pond Fraction over Arctic Sea Ice during 2000-2019 Using an Ensemble-Based Deep Neural Network</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><creator>Ding, Yifan ; Cheng, Xiao ; Liu, Jiping ; Hui, Fengming ; Wang, Zhenzhan ; Chen, Shengzhe</creator><creatorcontrib>Ding, Yifan ; Cheng, Xiao ; Liu, Jiping ; Hui, Fengming ; Wang, Zhenzhan ; Chen, Shengzhe</creatorcontrib><description>The accurate knowledge of variations of melt ponds is important for understanding the Arctic energy budget due to its albedo-transmittance-melt feedback. In this study, we develop and validate a new method for retrieving melt pond fraction (MPF) over Arctic sea ice using all seven spectral bands of MODIS surface reflectance. We construct a robust ensemble-based deep neural network and use in-situ MPF observations collected from multiple sources as the target data to train the network. We examine the potential influence of using sea ice concentration (SIC) from different sources as additional target data (besides MPF) on the MPF retrieval. The results suggest that the inclusion of SIC has a minor impact on MPF retrieval. Based on this, we create a new MPF data from 2000 to 2019 (the longest data in our knowledge). The validation shows that our new MPF data is in good agreement with the observations. We further compare the new MPF dataset with the previously published MPF datasets. It is found that the evolution of the new MPF is similar to previous MPF data throughout the melting season, but the new MPF data is in relatively better agreement with the observations in terms of correlations and root mean squared errors (RMSE), and also has the smallest value in the first half of the melting season.</description><identifier>ISSN: 2072-4292</identifier><identifier>EISSN: 2072-4292</identifier><identifier>DOI: 10.3390/rs12172746</identifier><language>eng</language><publisher>BASEL: Mdpi</publisher><subject>Albedo ; Algorithms ; Arctic sea ice ; Artificial neural networks ; Datasets ; deep neural network ; Energy budget ; Environmental Sciences ; Environmental Sciences & Ecology ; Geology ; Geosciences, Multidisciplinary ; Ice ; Imaging Science & Photographic Technology ; Life Sciences & Biomedicine ; melt pond fraction ; Melting ; Neural networks ; Physical Sciences ; Ponds ; Remote Sensing ; Retrieval ; Science & Technology ; Sea ice ; Seasons ; Spectral bands ; Summer ; Technology ; Topography ; Trends</subject><ispartof>Remote sensing (Basel, Switzerland), 2020-09, Vol.12 (17), p.2746, Article 2746</ispartof><rights>2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>12</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000569706800001</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c361t-eed3c0c1ab7ac01cca1a8ef9aad9fbe94d023f6e2650faa559bc42e10b9f4033</citedby><cites>FETCH-LOGICAL-c361t-eed3c0c1ab7ac01cca1a8ef9aad9fbe94d023f6e2650faa559bc42e10b9f4033</cites><orcidid>0000-0002-6098-844X ; 0000-0002-7275-3082</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,865,2103,2115,27928,27929</link.rule.ids></links><search><creatorcontrib>Ding, Yifan</creatorcontrib><creatorcontrib>Cheng, Xiao</creatorcontrib><creatorcontrib>Liu, Jiping</creatorcontrib><creatorcontrib>Hui, Fengming</creatorcontrib><creatorcontrib>Wang, Zhenzhan</creatorcontrib><creatorcontrib>Chen, Shengzhe</creatorcontrib><title>Retrieval of Melt Pond Fraction over Arctic Sea Ice during 2000-2019 Using an Ensemble-Based Deep Neural Network</title><title>Remote sensing (Basel, Switzerland)</title><addtitle>REMOTE SENS-BASEL</addtitle><description>The accurate knowledge of variations of melt ponds is important for understanding the Arctic energy budget due to its albedo-transmittance-melt feedback. In this study, we develop and validate a new method for retrieving melt pond fraction (MPF) over Arctic sea ice using all seven spectral bands of MODIS surface reflectance. We construct a robust ensemble-based deep neural network and use in-situ MPF observations collected from multiple sources as the target data to train the network. We examine the potential influence of using sea ice concentration (SIC) from different sources as additional target data (besides MPF) on the MPF retrieval. The results suggest that the inclusion of SIC has a minor impact on MPF retrieval. Based on this, we create a new MPF data from 2000 to 2019 (the longest data in our knowledge). The validation shows that our new MPF data is in good agreement with the observations. We further compare the new MPF dataset with the previously published MPF datasets. It is found that the evolution of the new MPF is similar to previous MPF data throughout the melting season, but the new MPF data is in relatively better agreement with the observations in terms of correlations and root mean squared errors (RMSE), and also has the smallest value in the first half of the melting season.</description><subject>Albedo</subject><subject>Algorithms</subject><subject>Arctic sea ice</subject><subject>Artificial neural networks</subject><subject>Datasets</subject><subject>deep neural network</subject><subject>Energy budget</subject><subject>Environmental Sciences</subject><subject>Environmental Sciences & Ecology</subject><subject>Geology</subject><subject>Geosciences, Multidisciplinary</subject><subject>Ice</subject><subject>Imaging Science & Photographic Technology</subject><subject>Life Sciences & Biomedicine</subject><subject>melt pond fraction</subject><subject>Melting</subject><subject>Neural networks</subject><subject>Physical Sciences</subject><subject>Ponds</subject><subject>Remote Sensing</subject><subject>Retrieval</subject><subject>Science & Technology</subject><subject>Sea ice</subject><subject>Seasons</subject><subject>Spectral bands</subject><subject>Summer</subject><subject>Technology</subject><subject>Topography</subject><subject>Trends</subject><issn>2072-4292</issn><issn>2072-4292</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AOWDO</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>DOA</sourceid><recordid>eNqNkctOxCAUhhujiUZn4xOQuNNUuQ0tSx1vk4yXeFmTU3owHWsZodX49jKOUZeygUM-Pjj8WbbL6KEQmh6FyDgreCHVWrbFacFzyTVf_7PezEYxzmkaQjBN5Va2uMM-NPgGLfGOXGHbk1vf1eQ8gO0b3xH_hoEch1RYco9AphZJPYSmeyI8eXJOmSaPcVlDR866iC9Vi_kJRKzJKeKCXOMQkv4a-3cfnneyDQdtxNH3vJ09nJ89TC7z2c3FdHI8y61QrM8Ra2GpZVAVYCmzFhiU6DRArV2FWtaUC6eQqzF1AOOxrqzkyGilnUzdbWfTlbb2MDeL0LxA-DAeGvO14cOTgZB6atGwUmoEaXWSS6W5FsApYkmdA0WxSq69lWsR_OuAsTdzP4Quvd5wKUqh0j_oRO2vKBt8jAHdz62MmmU-5jefBB-s4HesvIu2wc7iz4HkGytdUFUuo2KJLv9PT5oelslN_ND14hNYnqGI</recordid><startdate>20200901</startdate><enddate>20200901</enddate><creator>Ding, Yifan</creator><creator>Cheng, Xiao</creator><creator>Liu, Jiping</creator><creator>Hui, Fengming</creator><creator>Wang, Zhenzhan</creator><creator>Chen, Shengzhe</creator><general>Mdpi</general><general>MDPI AG</general><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SN</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PCBAR</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-6098-844X</orcidid><orcidid>https://orcid.org/0000-0002-7275-3082</orcidid></search><sort><creationdate>20200901</creationdate><title>Retrieval of Melt Pond Fraction over Arctic Sea Ice during 2000-2019 Using an Ensemble-Based Deep Neural Network</title><author>Ding, Yifan ; Cheng, Xiao ; Liu, Jiping ; Hui, Fengming ; Wang, Zhenzhan ; Chen, Shengzhe</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c361t-eed3c0c1ab7ac01cca1a8ef9aad9fbe94d023f6e2650faa559bc42e10b9f4033</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Albedo</topic><topic>Algorithms</topic><topic>Arctic sea ice</topic><topic>Artificial neural networks</topic><topic>Datasets</topic><topic>deep neural network</topic><topic>Energy budget</topic><topic>Environmental Sciences</topic><topic>Environmental Sciences & Ecology</topic><topic>Geology</topic><topic>Geosciences, Multidisciplinary</topic><topic>Ice</topic><topic>Imaging Science & Photographic Technology</topic><topic>Life Sciences & Biomedicine</topic><topic>melt pond fraction</topic><topic>Melting</topic><topic>Neural networks</topic><topic>Physical Sciences</topic><topic>Ponds</topic><topic>Remote Sensing</topic><topic>Retrieval</topic><topic>Science & Technology</topic><topic>Sea ice</topic><topic>Seasons</topic><topic>Spectral bands</topic><topic>Summer</topic><topic>Technology</topic><topic>Topography</topic><topic>Trends</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ding, Yifan</creatorcontrib><creatorcontrib>Cheng, Xiao</creatorcontrib><creatorcontrib>Liu, Jiping</creatorcontrib><creatorcontrib>Hui, Fengming</creatorcontrib><creatorcontrib>Wang, Zhenzhan</creatorcontrib><creatorcontrib>Chen, Shengzhe</creatorcontrib><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Ecology Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Remote sensing (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ding, Yifan</au><au>Cheng, Xiao</au><au>Liu, Jiping</au><au>Hui, Fengming</au><au>Wang, Zhenzhan</au><au>Chen, Shengzhe</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Retrieval of Melt Pond Fraction over Arctic Sea Ice during 2000-2019 Using an Ensemble-Based Deep Neural Network</atitle><jtitle>Remote sensing (Basel, Switzerland)</jtitle><stitle>REMOTE SENS-BASEL</stitle><date>2020-09-01</date><risdate>2020</risdate><volume>12</volume><issue>17</issue><spage>2746</spage><pages>2746-</pages><artnum>2746</artnum><issn>2072-4292</issn><eissn>2072-4292</eissn><abstract>The accurate knowledge of variations of melt ponds is important for understanding the Arctic energy budget due to its albedo-transmittance-melt feedback. In this study, we develop and validate a new method for retrieving melt pond fraction (MPF) over Arctic sea ice using all seven spectral bands of MODIS surface reflectance. We construct a robust ensemble-based deep neural network and use in-situ MPF observations collected from multiple sources as the target data to train the network. We examine the potential influence of using sea ice concentration (SIC) from different sources as additional target data (besides MPF) on the MPF retrieval. The results suggest that the inclusion of SIC has a minor impact on MPF retrieval. Based on this, we create a new MPF data from 2000 to 2019 (the longest data in our knowledge). The validation shows that our new MPF data is in good agreement with the observations. We further compare the new MPF dataset with the previously published MPF datasets. It is found that the evolution of the new MPF is similar to previous MPF data throughout the melting season, but the new MPF data is in relatively better agreement with the observations in terms of correlations and root mean squared errors (RMSE), and also has the smallest value in the first half of the melting season.</abstract><cop>BASEL</cop><pub>Mdpi</pub><doi>10.3390/rs12172746</doi><tpages>29</tpages><orcidid>https://orcid.org/0000-0002-6098-844X</orcidid><orcidid>https://orcid.org/0000-0002-7275-3082</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2072-4292 |
ispartof | Remote sensing (Basel, Switzerland), 2020-09, Vol.12 (17), p.2746, Article 2746 |
issn | 2072-4292 2072-4292 |
language | eng |
recordid | cdi_proquest_journals_2438360009 |
source | DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; MDPI - Multidisciplinary Digital Publishing Institute |
subjects | Albedo Algorithms Arctic sea ice Artificial neural networks Datasets deep neural network Energy budget Environmental Sciences Environmental Sciences & Ecology Geology Geosciences, Multidisciplinary Ice Imaging Science & Photographic Technology Life Sciences & Biomedicine melt pond fraction Melting Neural networks Physical Sciences Ponds Remote Sensing Retrieval Science & Technology Sea ice Seasons Spectral bands Summer Technology Topography Trends |
title | Retrieval of Melt Pond Fraction over Arctic Sea Ice during 2000-2019 Using an Ensemble-Based Deep Neural Network |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T22%3A05%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Retrieval%20of%20Melt%20Pond%20Fraction%20over%20Arctic%20Sea%20Ice%20during%202000-2019%20Using%20an%20Ensemble-Based%20Deep%20Neural%20Network&rft.jtitle=Remote%20sensing%20(Basel,%20Switzerland)&rft.au=Ding,%20Yifan&rft.date=2020-09-01&rft.volume=12&rft.issue=17&rft.spage=2746&rft.pages=2746-&rft.artnum=2746&rft.issn=2072-4292&rft.eissn=2072-4292&rft_id=info:doi/10.3390/rs12172746&rft_dat=%3Cproquest_cross%3E2438360009%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2438360009&rft_id=info:pmid/&rft_doaj_id=oai_doaj_org_article_1849ea4c99aa469293a20ee80ffa60eb&rfr_iscdi=true |