The petrogenesis of back-arc magmas, constrained by zircon O and Hf isotopes, in the Frontal Cordillera and Precordillera, Argentina

The Andean margin of the South American continent has been magmatically and tectonically active for over 330 million years. It is the type location where “Cordilleran-type” magmatism and orogenesis are manifest. In Argentina and Chile, between the latitudes of 28° and 40° S, magmatism related to the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Contributions to mineralogy and petrology 2020-08, Vol.175 (9), Article 89
Hauptverfasser: Poole, Gregory H., Kemp, Anthony I. S., Hagemann, Steffen G., Fiorentini, Marco L., Jeon, Heejin, Williams, Ian S., Zappettini, Eduardo O., Rubinstein, Nora A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 9
container_start_page
container_title Contributions to mineralogy and petrology
container_volume 175
creator Poole, Gregory H.
Kemp, Anthony I. S.
Hagemann, Steffen G.
Fiorentini, Marco L.
Jeon, Heejin
Williams, Ian S.
Zappettini, Eduardo O.
Rubinstein, Nora A.
description The Andean margin of the South American continent has been magmatically and tectonically active for over 330 million years. It is the type location where “Cordilleran-type” magmatism and orogenesis are manifest. In Argentina and Chile, between the latitudes of 28° and 40° S, magmatism related to the Gondwanan “Cordilleran-type” orogeny is reflected in a series of Carboniferous to Triassic intrusions. A comprehensive model exists for the petrogenesis of such magmas in Chile, however there is relatively little understanding of the nature and timing of Permo-Triassic magmatism in the Frontal Cordillera and Precordillera in Argentina. To address this, we present a new dataset of in situ zircon U–Pb, O and Hf isotopes from 15 felsic intrusions from Argentina. Zircon geochronology shows that magmatism in this region commenced at ca. 285 Ma and continued until ca. 250 Ma. Zircon O and Hf isotopes suggest that the oldest Permian magmas were derived from young supracrustal sources, with elevated δ 18 O (~ 8.5 to 7.5‰) and negative ε Hf values (~ − 1 to − 3 ε Hf ). The emplacement of these magmas was coeval with the formation of mantle-derived magmas characterised by mantle-like δ 18 O (~ 6.0 to 5.5‰) and moderately positive ε Hf values (~ 4 to 1 ε Hf ). As magmatism continued, transitional isotope signatures became predominant as melts of these disparate sources interacted and hybridised. It is proposed that under a compressional regime, mantle-derived magmas were halted in the lower continental crust, where they exchanged heat and volatiles with an older fertile lithosphere to generate melts from supracrustal sources. A shift in the stress regime at ca. 285 Ma permitted both crustally derived and juvenile mantle-derived magmas to exploit newly formed conduits to rise into the upper crust. A regional compilation of zircon O and Hf isotopes from felsic igneous rocks reveals a coherent secular trend over ~ 100 million years, where the oldest magmatism exhibits a dominant supracrustal component and younger magmas progressively (over 50 Ma) transition towards juvenile mantle-like isotopic compositions. This new dataset from Argentina fills a significant gap in the previous regional models between 285 and 250 Ma and documents the isotopic response of magmas produced in back-arc regions to a transition between compression and extensional/neutral stress regimes. These results give insight into the generation of new, or recycling of, continental crust in a back-arc setting
doi_str_mv 10.1007/s00410-020-01721-0
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2438348169</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A633980013</galeid><sourcerecordid>A633980013</sourcerecordid><originalsourceid>FETCH-LOGICAL-a447t-d4c07b45fbddb60a3acea1b7890763e47e83704fe7a4c82e83637aa7bffaf3123</originalsourceid><addsrcrecordid>eNp9kU1LJDEQhoMoOH78AU8Br7Zb6cRO93EYdF0Q3IN7DtXpymzc7mRM2oOe_eEbnWVlYVhCCFV53iqqXsbOBFwKAP0lAygBFdTlCl2LCvbYQihZV9A1ep8tAMq37rrukB3l_AglbrurBXt7-El8Q3OKawqUfebR8R7trwqT5ROuJ8wX3MaQ54Q-0MD7F_7qU8nwe45h4LeO-xznuKEC-sDnUvAmxTDjyFcxDX4cKeEH-j2R_Zu54MtUes4-4Ak7cDhmOv3zHrMfN9cPq9vq7v7rt9XyrkKl9FwNyoLu1ZXrh6FvACVaQtHrtgPdSFKaWqlBOdKobFuXqJEaUffOoZOilsfsfFt3k-LTM-XZPMbnFEpLUyvZStWKpvuk1jiS8cHFMrqdfLZm2UjZtWV3slDVDup9iQnHGMj5kv6Hv9zBlzPQ5O1OQb0V2BRzTuTMJvkJ04sRYN5NN1vTTTHdfJhuoIjkVpQLHNaUPif8j-o3aBquOg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2438348169</pqid></control><display><type>article</type><title>The petrogenesis of back-arc magmas, constrained by zircon O and Hf isotopes, in the Frontal Cordillera and Precordillera, Argentina</title><source>SpringerLink Journals - AutoHoldings</source><creator>Poole, Gregory H. ; Kemp, Anthony I. S. ; Hagemann, Steffen G. ; Fiorentini, Marco L. ; Jeon, Heejin ; Williams, Ian S. ; Zappettini, Eduardo O. ; Rubinstein, Nora A.</creator><creatorcontrib>Poole, Gregory H. ; Kemp, Anthony I. S. ; Hagemann, Steffen G. ; Fiorentini, Marco L. ; Jeon, Heejin ; Williams, Ian S. ; Zappettini, Eduardo O. ; Rubinstein, Nora A.</creatorcontrib><description>The Andean margin of the South American continent has been magmatically and tectonically active for over 330 million years. It is the type location where “Cordilleran-type” magmatism and orogenesis are manifest. In Argentina and Chile, between the latitudes of 28° and 40° S, magmatism related to the Gondwanan “Cordilleran-type” orogeny is reflected in a series of Carboniferous to Triassic intrusions. A comprehensive model exists for the petrogenesis of such magmas in Chile, however there is relatively little understanding of the nature and timing of Permo-Triassic magmatism in the Frontal Cordillera and Precordillera in Argentina. To address this, we present a new dataset of in situ zircon U–Pb, O and Hf isotopes from 15 felsic intrusions from Argentina. Zircon geochronology shows that magmatism in this region commenced at ca. 285 Ma and continued until ca. 250 Ma. Zircon O and Hf isotopes suggest that the oldest Permian magmas were derived from young supracrustal sources, with elevated δ 18 O (~ 8.5 to 7.5‰) and negative ε Hf values (~ − 1 to − 3 ε Hf ). The emplacement of these magmas was coeval with the formation of mantle-derived magmas characterised by mantle-like δ 18 O (~ 6.0 to 5.5‰) and moderately positive ε Hf values (~ 4 to 1 ε Hf ). As magmatism continued, transitional isotope signatures became predominant as melts of these disparate sources interacted and hybridised. It is proposed that under a compressional regime, mantle-derived magmas were halted in the lower continental crust, where they exchanged heat and volatiles with an older fertile lithosphere to generate melts from supracrustal sources. A shift in the stress regime at ca. 285 Ma permitted both crustally derived and juvenile mantle-derived magmas to exploit newly formed conduits to rise into the upper crust. A regional compilation of zircon O and Hf isotopes from felsic igneous rocks reveals a coherent secular trend over ~ 100 million years, where the oldest magmatism exhibits a dominant supracrustal component and younger magmas progressively (over 50 Ma) transition towards juvenile mantle-like isotopic compositions. This new dataset from Argentina fills a significant gap in the previous regional models between 285 and 250 Ma and documents the isotopic response of magmas produced in back-arc regions to a transition between compression and extensional/neutral stress regimes. These results give insight into the generation of new, or recycling of, continental crust in a back-arc setting and how the transition from compression to extension is imperative for ore-forming magmas to reach the upper crust.</description><identifier>ISSN: 0010-7999</identifier><identifier>EISSN: 1432-0967</identifier><identifier>DOI: 10.1007/s00410-020-01721-0</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Analysis ; Carboniferous ; Compression ; Continental crust ; Datasets ; Earth and Environmental Science ; Earth Sciences ; Fertility ; Geochronology ; Geochronometry ; Geology ; Heat exchange ; Igneous rocks ; Isotopes ; Lithosphere ; Magma ; Magmatism ; Melts ; Mineral Resources ; Mineralogy ; Original Paper ; Orogeny ; Permian ; Petrogenesis ; Petrology ; Rocks, Igneous ; Triassic ; Zircon ; Zirconium</subject><ispartof>Contributions to mineralogy and petrology, 2020-08, Vol.175 (9), Article 89</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2020</rights><rights>COPYRIGHT 2020 Springer</rights><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a447t-d4c07b45fbddb60a3acea1b7890763e47e83704fe7a4c82e83637aa7bffaf3123</citedby><cites>FETCH-LOGICAL-a447t-d4c07b45fbddb60a3acea1b7890763e47e83704fe7a4c82e83637aa7bffaf3123</cites><orcidid>0000-0003-1642-0360 ; 0000-0003-1256-6856 ; 0000-0001-8079-9606</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00410-020-01721-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00410-020-01721-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Poole, Gregory H.</creatorcontrib><creatorcontrib>Kemp, Anthony I. S.</creatorcontrib><creatorcontrib>Hagemann, Steffen G.</creatorcontrib><creatorcontrib>Fiorentini, Marco L.</creatorcontrib><creatorcontrib>Jeon, Heejin</creatorcontrib><creatorcontrib>Williams, Ian S.</creatorcontrib><creatorcontrib>Zappettini, Eduardo O.</creatorcontrib><creatorcontrib>Rubinstein, Nora A.</creatorcontrib><title>The petrogenesis of back-arc magmas, constrained by zircon O and Hf isotopes, in the Frontal Cordillera and Precordillera, Argentina</title><title>Contributions to mineralogy and petrology</title><addtitle>Contrib Mineral Petrol</addtitle><description>The Andean margin of the South American continent has been magmatically and tectonically active for over 330 million years. It is the type location where “Cordilleran-type” magmatism and orogenesis are manifest. In Argentina and Chile, between the latitudes of 28° and 40° S, magmatism related to the Gondwanan “Cordilleran-type” orogeny is reflected in a series of Carboniferous to Triassic intrusions. A comprehensive model exists for the petrogenesis of such magmas in Chile, however there is relatively little understanding of the nature and timing of Permo-Triassic magmatism in the Frontal Cordillera and Precordillera in Argentina. To address this, we present a new dataset of in situ zircon U–Pb, O and Hf isotopes from 15 felsic intrusions from Argentina. Zircon geochronology shows that magmatism in this region commenced at ca. 285 Ma and continued until ca. 250 Ma. Zircon O and Hf isotopes suggest that the oldest Permian magmas were derived from young supracrustal sources, with elevated δ 18 O (~ 8.5 to 7.5‰) and negative ε Hf values (~ − 1 to − 3 ε Hf ). The emplacement of these magmas was coeval with the formation of mantle-derived magmas characterised by mantle-like δ 18 O (~ 6.0 to 5.5‰) and moderately positive ε Hf values (~ 4 to 1 ε Hf ). As magmatism continued, transitional isotope signatures became predominant as melts of these disparate sources interacted and hybridised. It is proposed that under a compressional regime, mantle-derived magmas were halted in the lower continental crust, where they exchanged heat and volatiles with an older fertile lithosphere to generate melts from supracrustal sources. A shift in the stress regime at ca. 285 Ma permitted both crustally derived and juvenile mantle-derived magmas to exploit newly formed conduits to rise into the upper crust. A regional compilation of zircon O and Hf isotopes from felsic igneous rocks reveals a coherent secular trend over ~ 100 million years, where the oldest magmatism exhibits a dominant supracrustal component and younger magmas progressively (over 50 Ma) transition towards juvenile mantle-like isotopic compositions. This new dataset from Argentina fills a significant gap in the previous regional models between 285 and 250 Ma and documents the isotopic response of magmas produced in back-arc regions to a transition between compression and extensional/neutral stress regimes. These results give insight into the generation of new, or recycling of, continental crust in a back-arc setting and how the transition from compression to extension is imperative for ore-forming magmas to reach the upper crust.</description><subject>Analysis</subject><subject>Carboniferous</subject><subject>Compression</subject><subject>Continental crust</subject><subject>Datasets</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Fertility</subject><subject>Geochronology</subject><subject>Geochronometry</subject><subject>Geology</subject><subject>Heat exchange</subject><subject>Igneous rocks</subject><subject>Isotopes</subject><subject>Lithosphere</subject><subject>Magma</subject><subject>Magmatism</subject><subject>Melts</subject><subject>Mineral Resources</subject><subject>Mineralogy</subject><subject>Original Paper</subject><subject>Orogeny</subject><subject>Permian</subject><subject>Petrogenesis</subject><subject>Petrology</subject><subject>Rocks, Igneous</subject><subject>Triassic</subject><subject>Zircon</subject><subject>Zirconium</subject><issn>0010-7999</issn><issn>1432-0967</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kU1LJDEQhoMoOH78AU8Br7Zb6cRO93EYdF0Q3IN7DtXpymzc7mRM2oOe_eEbnWVlYVhCCFV53iqqXsbOBFwKAP0lAygBFdTlCl2LCvbYQihZV9A1ep8tAMq37rrukB3l_AglbrurBXt7-El8Q3OKawqUfebR8R7trwqT5ROuJ8wX3MaQ54Q-0MD7F_7qU8nwe45h4LeO-xznuKEC-sDnUvAmxTDjyFcxDX4cKeEH-j2R_Zu54MtUes4-4Ak7cDhmOv3zHrMfN9cPq9vq7v7rt9XyrkKl9FwNyoLu1ZXrh6FvACVaQtHrtgPdSFKaWqlBOdKobFuXqJEaUffOoZOilsfsfFt3k-LTM-XZPMbnFEpLUyvZStWKpvuk1jiS8cHFMrqdfLZm2UjZtWV3slDVDup9iQnHGMj5kv6Hv9zBlzPQ5O1OQb0V2BRzTuTMJvkJ04sRYN5NN1vTTTHdfJhuoIjkVpQLHNaUPif8j-o3aBquOg</recordid><startdate>20200829</startdate><enddate>20200829</enddate><creator>Poole, Gregory H.</creator><creator>Kemp, Anthony I. S.</creator><creator>Hagemann, Steffen G.</creator><creator>Fiorentini, Marco L.</creator><creator>Jeon, Heejin</creator><creator>Williams, Ian S.</creator><creator>Zappettini, Eduardo O.</creator><creator>Rubinstein, Nora A.</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TN</scope><scope>7XB</scope><scope>88I</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L.G</scope><scope>L6V</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>R05</scope><orcidid>https://orcid.org/0000-0003-1642-0360</orcidid><orcidid>https://orcid.org/0000-0003-1256-6856</orcidid><orcidid>https://orcid.org/0000-0001-8079-9606</orcidid></search><sort><creationdate>20200829</creationdate><title>The petrogenesis of back-arc magmas, constrained by zircon O and Hf isotopes, in the Frontal Cordillera and Precordillera, Argentina</title><author>Poole, Gregory H. ; Kemp, Anthony I. S. ; Hagemann, Steffen G. ; Fiorentini, Marco L. ; Jeon, Heejin ; Williams, Ian S. ; Zappettini, Eduardo O. ; Rubinstein, Nora A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a447t-d4c07b45fbddb60a3acea1b7890763e47e83704fe7a4c82e83637aa7bffaf3123</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Analysis</topic><topic>Carboniferous</topic><topic>Compression</topic><topic>Continental crust</topic><topic>Datasets</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Fertility</topic><topic>Geochronology</topic><topic>Geochronometry</topic><topic>Geology</topic><topic>Heat exchange</topic><topic>Igneous rocks</topic><topic>Isotopes</topic><topic>Lithosphere</topic><topic>Magma</topic><topic>Magmatism</topic><topic>Melts</topic><topic>Mineral Resources</topic><topic>Mineralogy</topic><topic>Original Paper</topic><topic>Orogeny</topic><topic>Permian</topic><topic>Petrogenesis</topic><topic>Petrology</topic><topic>Rocks, Igneous</topic><topic>Triassic</topic><topic>Zircon</topic><topic>Zirconium</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Poole, Gregory H.</creatorcontrib><creatorcontrib>Kemp, Anthony I. S.</creatorcontrib><creatorcontrib>Hagemann, Steffen G.</creatorcontrib><creatorcontrib>Fiorentini, Marco L.</creatorcontrib><creatorcontrib>Jeon, Heejin</creatorcontrib><creatorcontrib>Williams, Ian S.</creatorcontrib><creatorcontrib>Zappettini, Eduardo O.</creatorcontrib><creatorcontrib>Rubinstein, Nora A.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Oceanic Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>University of Michigan</collection><jtitle>Contributions to mineralogy and petrology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Poole, Gregory H.</au><au>Kemp, Anthony I. S.</au><au>Hagemann, Steffen G.</au><au>Fiorentini, Marco L.</au><au>Jeon, Heejin</au><au>Williams, Ian S.</au><au>Zappettini, Eduardo O.</au><au>Rubinstein, Nora A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The petrogenesis of back-arc magmas, constrained by zircon O and Hf isotopes, in the Frontal Cordillera and Precordillera, Argentina</atitle><jtitle>Contributions to mineralogy and petrology</jtitle><stitle>Contrib Mineral Petrol</stitle><date>2020-08-29</date><risdate>2020</risdate><volume>175</volume><issue>9</issue><artnum>89</artnum><issn>0010-7999</issn><eissn>1432-0967</eissn><abstract>The Andean margin of the South American continent has been magmatically and tectonically active for over 330 million years. It is the type location where “Cordilleran-type” magmatism and orogenesis are manifest. In Argentina and Chile, between the latitudes of 28° and 40° S, magmatism related to the Gondwanan “Cordilleran-type” orogeny is reflected in a series of Carboniferous to Triassic intrusions. A comprehensive model exists for the petrogenesis of such magmas in Chile, however there is relatively little understanding of the nature and timing of Permo-Triassic magmatism in the Frontal Cordillera and Precordillera in Argentina. To address this, we present a new dataset of in situ zircon U–Pb, O and Hf isotopes from 15 felsic intrusions from Argentina. Zircon geochronology shows that magmatism in this region commenced at ca. 285 Ma and continued until ca. 250 Ma. Zircon O and Hf isotopes suggest that the oldest Permian magmas were derived from young supracrustal sources, with elevated δ 18 O (~ 8.5 to 7.5‰) and negative ε Hf values (~ − 1 to − 3 ε Hf ). The emplacement of these magmas was coeval with the formation of mantle-derived magmas characterised by mantle-like δ 18 O (~ 6.0 to 5.5‰) and moderately positive ε Hf values (~ 4 to 1 ε Hf ). As magmatism continued, transitional isotope signatures became predominant as melts of these disparate sources interacted and hybridised. It is proposed that under a compressional regime, mantle-derived magmas were halted in the lower continental crust, where they exchanged heat and volatiles with an older fertile lithosphere to generate melts from supracrustal sources. A shift in the stress regime at ca. 285 Ma permitted both crustally derived and juvenile mantle-derived magmas to exploit newly formed conduits to rise into the upper crust. A regional compilation of zircon O and Hf isotopes from felsic igneous rocks reveals a coherent secular trend over ~ 100 million years, where the oldest magmatism exhibits a dominant supracrustal component and younger magmas progressively (over 50 Ma) transition towards juvenile mantle-like isotopic compositions. This new dataset from Argentina fills a significant gap in the previous regional models between 285 and 250 Ma and documents the isotopic response of magmas produced in back-arc regions to a transition between compression and extensional/neutral stress regimes. These results give insight into the generation of new, or recycling of, continental crust in a back-arc setting and how the transition from compression to extension is imperative for ore-forming magmas to reach the upper crust.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00410-020-01721-0</doi><orcidid>https://orcid.org/0000-0003-1642-0360</orcidid><orcidid>https://orcid.org/0000-0003-1256-6856</orcidid><orcidid>https://orcid.org/0000-0001-8079-9606</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0010-7999
ispartof Contributions to mineralogy and petrology, 2020-08, Vol.175 (9), Article 89
issn 0010-7999
1432-0967
language eng
recordid cdi_proquest_journals_2438348169
source SpringerLink Journals - AutoHoldings
subjects Analysis
Carboniferous
Compression
Continental crust
Datasets
Earth and Environmental Science
Earth Sciences
Fertility
Geochronology
Geochronometry
Geology
Heat exchange
Igneous rocks
Isotopes
Lithosphere
Magma
Magmatism
Melts
Mineral Resources
Mineralogy
Original Paper
Orogeny
Permian
Petrogenesis
Petrology
Rocks, Igneous
Triassic
Zircon
Zirconium
title The petrogenesis of back-arc magmas, constrained by zircon O and Hf isotopes, in the Frontal Cordillera and Precordillera, Argentina
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T15%3A35%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20petrogenesis%20of%20back-arc%20magmas,%20constrained%20by%20zircon%20O%20and%20Hf%20isotopes,%20in%20the%20Frontal%20Cordillera%20and%20Precordillera,%20Argentina&rft.jtitle=Contributions%20to%20mineralogy%20and%20petrology&rft.au=Poole,%20Gregory%20H.&rft.date=2020-08-29&rft.volume=175&rft.issue=9&rft.artnum=89&rft.issn=0010-7999&rft.eissn=1432-0967&rft_id=info:doi/10.1007/s00410-020-01721-0&rft_dat=%3Cgale_proqu%3EA633980013%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2438348169&rft_id=info:pmid/&rft_galeid=A633980013&rfr_iscdi=true