A review of the state-of-the-art research on carbon structure evolution during the coking process: From plastic layer chemistry to 3D carbon structure establishment
This paper provides a review of the state-of-the-art research in the open literature on the carbon structure evolution in the semi-coke region following the last stage of the plastic layer transformation. Coking coals exhibit thermoplastic fluid-like behavior due to the change of chemical structures...
Gespeichert in:
Veröffentlicht in: | Fuel (Guildford) 2020-07, Vol.271, p.117657, Article 117657 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 117657 |
container_title | Fuel (Guildford) |
container_volume | 271 |
creator | Chen, Yixin Lee, Soonho Tahmasebi, Arash Bai, Jin Mahoney, Merrick Yu, Jianglong |
description | This paper provides a review of the state-of-the-art research in the open literature on the carbon structure evolution in the semi-coke region following the last stage of the plastic layer transformation. Coking coals exhibit thermoplastic fluid-like behavior due to the change of chemical structures in plastic layers when heated in the coke ovens. Once the temperature of the coal charge exceeds the thermoplastic range, condensation, cross-linking, and repolymerization reactions take place. This results in the formation of a more ordered structure, referred to as semi-coke, with the final release of light gases. A further temperature increase leads to the release of hydrogen from the aromatic hydrocarbon structures with the formation of C–C bonds and, consequently, the carbon structure, which corresponds to the gradual transformation from the semi-coke to high-temperature coke. A variety of advanced analytical techniques have been employed, including infrared spectroscopy (IR), solid-state carbon-13 nuclear magnetic resonance (13C NMR) and X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), high-resolution transmission electron microscopy (HRTEM), and Raman spectroscopy. The carbon structure in coke generally is generally in the form of non-graphitic turbostratic structure, which exhibits isotropic property. There is a lack of information in terms of the 3D carbon structure model of coke/semi-coke and how these structures evolve from hydrocarbon sheets to more stable structures above 500 °C in the coke oven. This review also concludes future research scopes and the limitations of current knowledge. |
doi_str_mv | 10.1016/j.fuel.2020.117657 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2438222110</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0016236120306529</els_id><sourcerecordid>2438222110</sourcerecordid><originalsourceid>FETCH-LOGICAL-c328t-91ce4799844ceb48268a92cdb4edc55cdb5c0702f56eb73bf9f7ad8f352e33133</originalsourceid><addsrcrecordid>eNp9Uctu1DAUtVCRmBZ-gJWlrjP4kcQJ6qYqLVSqxAbWlnNzzXjIxNNrp2j-hw-th-kSdXVf5xwf-TD2UYq1FLL9tF37Bae1EqospGkb84atZGd0ZWSjz9hKFFSldCvfsfOUtkII0zX1iv295oRPAf_w6HneIE_ZZayir8pQOcrlnNARbHicOTgaSkmZFsgLIcenOC05lN24UJh__ZOA-PvY7ikCpvSZ31Hc8f3kUg7AJ3dA4rDBXSgyB54j11_-I1x8DFNImx3O-T17692U8MNLvWA_725_3HyrHr5_vb-5fqhAqy5XvQSsTd93dQ041J1qO9crGIcaR2ia0jQgjFC-aXEwevC9N27svG4Uai21vmCXJ91i_XEpFuw2LjSXJ62qdaeUklIUlDqhgGJKhN7uKewcHawU9piG3dpjGvaYhj2lUUhXJxIW_-W_ySYIOAOOgRCyHWN4jf4MSBmW8g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2438222110</pqid></control><display><type>article</type><title>A review of the state-of-the-art research on carbon structure evolution during the coking process: From plastic layer chemistry to 3D carbon structure establishment</title><source>Access via ScienceDirect (Elsevier)</source><creator>Chen, Yixin ; Lee, Soonho ; Tahmasebi, Arash ; Bai, Jin ; Mahoney, Merrick ; Yu, Jianglong</creator><creatorcontrib>Chen, Yixin ; Lee, Soonho ; Tahmasebi, Arash ; Bai, Jin ; Mahoney, Merrick ; Yu, Jianglong</creatorcontrib><description>This paper provides a review of the state-of-the-art research in the open literature on the carbon structure evolution in the semi-coke region following the last stage of the plastic layer transformation. Coking coals exhibit thermoplastic fluid-like behavior due to the change of chemical structures in plastic layers when heated in the coke ovens. Once the temperature of the coal charge exceeds the thermoplastic range, condensation, cross-linking, and repolymerization reactions take place. This results in the formation of a more ordered structure, referred to as semi-coke, with the final release of light gases. A further temperature increase leads to the release of hydrogen from the aromatic hydrocarbon structures with the formation of C–C bonds and, consequently, the carbon structure, which corresponds to the gradual transformation from the semi-coke to high-temperature coke. A variety of advanced analytical techniques have been employed, including infrared spectroscopy (IR), solid-state carbon-13 nuclear magnetic resonance (13C NMR) and X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), high-resolution transmission electron microscopy (HRTEM), and Raman spectroscopy. The carbon structure in coke generally is generally in the form of non-graphitic turbostratic structure, which exhibits isotropic property. There is a lack of information in terms of the 3D carbon structure model of coke/semi-coke and how these structures evolve from hydrocarbon sheets to more stable structures above 500 °C in the coke oven. This review also concludes future research scopes and the limitations of current knowledge.</description><identifier>ISSN: 0016-2361</identifier><identifier>EISSN: 1873-7153</identifier><identifier>DOI: 10.1016/j.fuel.2020.117657</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Aromatic hydrocarbons ; Carbon ; Carbon 13 ; Carbon structure ; Chemical structure ; Coke ; Coke oven heating ; Coke ovens ; Coke quality ; Coke-making ; Coking ; Covalent bonds ; Crosslinking ; Evolution ; Gases ; High temperature ; Hydrocarbons ; Infrared analysis ; Infrared spectroscopy ; NMR ; Nuclear magnetic resonance ; Photoelectron spectroscopy ; Photoelectrons ; Plastic layer ; Plastics ; Raman spectroscopy ; Reviews ; State-of-the-art reviews ; Three dimensional models ; Transmission electron microscopy ; X ray photoelectron spectroscopy ; X-ray diffraction</subject><ispartof>Fuel (Guildford), 2020-07, Vol.271, p.117657, Article 117657</ispartof><rights>2020 Elsevier Ltd</rights><rights>Copyright Elsevier BV Jul 1, 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c328t-91ce4799844ceb48268a92cdb4edc55cdb5c0702f56eb73bf9f7ad8f352e33133</citedby><cites>FETCH-LOGICAL-c328t-91ce4799844ceb48268a92cdb4edc55cdb5c0702f56eb73bf9f7ad8f352e33133</cites><orcidid>0000-0002-2559-4760 ; 0000-0002-8623-1656 ; 0000-0002-5932-0813</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.fuel.2020.117657$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Chen, Yixin</creatorcontrib><creatorcontrib>Lee, Soonho</creatorcontrib><creatorcontrib>Tahmasebi, Arash</creatorcontrib><creatorcontrib>Bai, Jin</creatorcontrib><creatorcontrib>Mahoney, Merrick</creatorcontrib><creatorcontrib>Yu, Jianglong</creatorcontrib><title>A review of the state-of-the-art research on carbon structure evolution during the coking process: From plastic layer chemistry to 3D carbon structure establishment</title><title>Fuel (Guildford)</title><description>This paper provides a review of the state-of-the-art research in the open literature on the carbon structure evolution in the semi-coke region following the last stage of the plastic layer transformation. Coking coals exhibit thermoplastic fluid-like behavior due to the change of chemical structures in plastic layers when heated in the coke ovens. Once the temperature of the coal charge exceeds the thermoplastic range, condensation, cross-linking, and repolymerization reactions take place. This results in the formation of a more ordered structure, referred to as semi-coke, with the final release of light gases. A further temperature increase leads to the release of hydrogen from the aromatic hydrocarbon structures with the formation of C–C bonds and, consequently, the carbon structure, which corresponds to the gradual transformation from the semi-coke to high-temperature coke. A variety of advanced analytical techniques have been employed, including infrared spectroscopy (IR), solid-state carbon-13 nuclear magnetic resonance (13C NMR) and X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), high-resolution transmission electron microscopy (HRTEM), and Raman spectroscopy. The carbon structure in coke generally is generally in the form of non-graphitic turbostratic structure, which exhibits isotropic property. There is a lack of information in terms of the 3D carbon structure model of coke/semi-coke and how these structures evolve from hydrocarbon sheets to more stable structures above 500 °C in the coke oven. This review also concludes future research scopes and the limitations of current knowledge.</description><subject>Aromatic hydrocarbons</subject><subject>Carbon</subject><subject>Carbon 13</subject><subject>Carbon structure</subject><subject>Chemical structure</subject><subject>Coke</subject><subject>Coke oven heating</subject><subject>Coke ovens</subject><subject>Coke quality</subject><subject>Coke-making</subject><subject>Coking</subject><subject>Covalent bonds</subject><subject>Crosslinking</subject><subject>Evolution</subject><subject>Gases</subject><subject>High temperature</subject><subject>Hydrocarbons</subject><subject>Infrared analysis</subject><subject>Infrared spectroscopy</subject><subject>NMR</subject><subject>Nuclear magnetic resonance</subject><subject>Photoelectron spectroscopy</subject><subject>Photoelectrons</subject><subject>Plastic layer</subject><subject>Plastics</subject><subject>Raman spectroscopy</subject><subject>Reviews</subject><subject>State-of-the-art reviews</subject><subject>Three dimensional models</subject><subject>Transmission electron microscopy</subject><subject>X ray photoelectron spectroscopy</subject><subject>X-ray diffraction</subject><issn>0016-2361</issn><issn>1873-7153</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9Uctu1DAUtVCRmBZ-gJWlrjP4kcQJ6qYqLVSqxAbWlnNzzXjIxNNrp2j-hw-th-kSdXVf5xwf-TD2UYq1FLL9tF37Bae1EqospGkb84atZGd0ZWSjz9hKFFSldCvfsfOUtkII0zX1iv295oRPAf_w6HneIE_ZZayir8pQOcrlnNARbHicOTgaSkmZFsgLIcenOC05lN24UJh__ZOA-PvY7ikCpvSZ31Hc8f3kUg7AJ3dA4rDBXSgyB54j11_-I1x8DFNImx3O-T17692U8MNLvWA_725_3HyrHr5_vb-5fqhAqy5XvQSsTd93dQ041J1qO9crGIcaR2ia0jQgjFC-aXEwevC9N27svG4Uai21vmCXJ91i_XEpFuw2LjSXJ62qdaeUklIUlDqhgGJKhN7uKewcHawU9piG3dpjGvaYhj2lUUhXJxIW_-W_ySYIOAOOgRCyHWN4jf4MSBmW8g</recordid><startdate>20200701</startdate><enddate>20200701</enddate><creator>Chen, Yixin</creator><creator>Lee, Soonho</creator><creator>Tahmasebi, Arash</creator><creator>Bai, Jin</creator><creator>Mahoney, Merrick</creator><creator>Yu, Jianglong</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><orcidid>https://orcid.org/0000-0002-2559-4760</orcidid><orcidid>https://orcid.org/0000-0002-8623-1656</orcidid><orcidid>https://orcid.org/0000-0002-5932-0813</orcidid></search><sort><creationdate>20200701</creationdate><title>A review of the state-of-the-art research on carbon structure evolution during the coking process: From plastic layer chemistry to 3D carbon structure establishment</title><author>Chen, Yixin ; Lee, Soonho ; Tahmasebi, Arash ; Bai, Jin ; Mahoney, Merrick ; Yu, Jianglong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c328t-91ce4799844ceb48268a92cdb4edc55cdb5c0702f56eb73bf9f7ad8f352e33133</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Aromatic hydrocarbons</topic><topic>Carbon</topic><topic>Carbon 13</topic><topic>Carbon structure</topic><topic>Chemical structure</topic><topic>Coke</topic><topic>Coke oven heating</topic><topic>Coke ovens</topic><topic>Coke quality</topic><topic>Coke-making</topic><topic>Coking</topic><topic>Covalent bonds</topic><topic>Crosslinking</topic><topic>Evolution</topic><topic>Gases</topic><topic>High temperature</topic><topic>Hydrocarbons</topic><topic>Infrared analysis</topic><topic>Infrared spectroscopy</topic><topic>NMR</topic><topic>Nuclear magnetic resonance</topic><topic>Photoelectron spectroscopy</topic><topic>Photoelectrons</topic><topic>Plastic layer</topic><topic>Plastics</topic><topic>Raman spectroscopy</topic><topic>Reviews</topic><topic>State-of-the-art reviews</topic><topic>Three dimensional models</topic><topic>Transmission electron microscopy</topic><topic>X ray photoelectron spectroscopy</topic><topic>X-ray diffraction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Yixin</creatorcontrib><creatorcontrib>Lee, Soonho</creatorcontrib><creatorcontrib>Tahmasebi, Arash</creatorcontrib><creatorcontrib>Bai, Jin</creatorcontrib><creatorcontrib>Mahoney, Merrick</creatorcontrib><creatorcontrib>Yu, Jianglong</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Fuel (Guildford)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Yixin</au><au>Lee, Soonho</au><au>Tahmasebi, Arash</au><au>Bai, Jin</au><au>Mahoney, Merrick</au><au>Yu, Jianglong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A review of the state-of-the-art research on carbon structure evolution during the coking process: From plastic layer chemistry to 3D carbon structure establishment</atitle><jtitle>Fuel (Guildford)</jtitle><date>2020-07-01</date><risdate>2020</risdate><volume>271</volume><spage>117657</spage><pages>117657-</pages><artnum>117657</artnum><issn>0016-2361</issn><eissn>1873-7153</eissn><abstract>This paper provides a review of the state-of-the-art research in the open literature on the carbon structure evolution in the semi-coke region following the last stage of the plastic layer transformation. Coking coals exhibit thermoplastic fluid-like behavior due to the change of chemical structures in plastic layers when heated in the coke ovens. Once the temperature of the coal charge exceeds the thermoplastic range, condensation, cross-linking, and repolymerization reactions take place. This results in the formation of a more ordered structure, referred to as semi-coke, with the final release of light gases. A further temperature increase leads to the release of hydrogen from the aromatic hydrocarbon structures with the formation of C–C bonds and, consequently, the carbon structure, which corresponds to the gradual transformation from the semi-coke to high-temperature coke. A variety of advanced analytical techniques have been employed, including infrared spectroscopy (IR), solid-state carbon-13 nuclear magnetic resonance (13C NMR) and X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), high-resolution transmission electron microscopy (HRTEM), and Raman spectroscopy. The carbon structure in coke generally is generally in the form of non-graphitic turbostratic structure, which exhibits isotropic property. There is a lack of information in terms of the 3D carbon structure model of coke/semi-coke and how these structures evolve from hydrocarbon sheets to more stable structures above 500 °C in the coke oven. This review also concludes future research scopes and the limitations of current knowledge.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.fuel.2020.117657</doi><orcidid>https://orcid.org/0000-0002-2559-4760</orcidid><orcidid>https://orcid.org/0000-0002-8623-1656</orcidid><orcidid>https://orcid.org/0000-0002-5932-0813</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0016-2361 |
ispartof | Fuel (Guildford), 2020-07, Vol.271, p.117657, Article 117657 |
issn | 0016-2361 1873-7153 |
language | eng |
recordid | cdi_proquest_journals_2438222110 |
source | Access via ScienceDirect (Elsevier) |
subjects | Aromatic hydrocarbons Carbon Carbon 13 Carbon structure Chemical structure Coke Coke oven heating Coke ovens Coke quality Coke-making Coking Covalent bonds Crosslinking Evolution Gases High temperature Hydrocarbons Infrared analysis Infrared spectroscopy NMR Nuclear magnetic resonance Photoelectron spectroscopy Photoelectrons Plastic layer Plastics Raman spectroscopy Reviews State-of-the-art reviews Three dimensional models Transmission electron microscopy X ray photoelectron spectroscopy X-ray diffraction |
title | A review of the state-of-the-art research on carbon structure evolution during the coking process: From plastic layer chemistry to 3D carbon structure establishment |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T19%3A13%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20review%20of%20the%20state-of-the-art%20research%20on%20carbon%20structure%20evolution%20during%20the%20coking%20process:%20From%20plastic%20layer%20chemistry%20to%203D%20carbon%20structure%20establishment&rft.jtitle=Fuel%20(Guildford)&rft.au=Chen,%20Yixin&rft.date=2020-07-01&rft.volume=271&rft.spage=117657&rft.pages=117657-&rft.artnum=117657&rft.issn=0016-2361&rft.eissn=1873-7153&rft_id=info:doi/10.1016/j.fuel.2020.117657&rft_dat=%3Cproquest_cross%3E2438222110%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2438222110&rft_id=info:pmid/&rft_els_id=S0016236120306529&rfr_iscdi=true |