In-situ phosphorus-doped polysilicon prepared using rapid-thermal anneal (RTA) and its application for polysilicon passivated-contact solar cells

A rapid thermal anneal (RTA) is used to crystallize the plasma-enhanced chemical vapor deposition (PECVD) deposited hydrogenated amorphous silicon (a-Si:H) thin film to form the phosphorus-doped polysilicon passivated contact in tunnel oxide passivated contact (TOPCon) solar cells. The effects of an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Solar energy materials and solar cells 2020-06, Vol.210, p.110518, Article 110518
Hauptverfasser: Yang, Qing, Liao, Mingdun, Wang, Zhixue, Zheng, Jingming, lin, Yiran, Guo, Xueqi, Rui, Zhe, Huang, Dandan, Lu, Linna, Feng, Mengmeng, Cheng, Peihong, Shou, Chunhui, Zeng, Yuheng, Yan, Baojie, Ye, Jichun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 110518
container_title Solar energy materials and solar cells
container_volume 210
creator Yang, Qing
Liao, Mingdun
Wang, Zhixue
Zheng, Jingming
lin, Yiran
Guo, Xueqi
Rui, Zhe
Huang, Dandan
Lu, Linna
Feng, Mengmeng
Cheng, Peihong
Shou, Chunhui
Zeng, Yuheng
Yan, Baojie
Ye, Jichun
description A rapid thermal anneal (RTA) is used to crystallize the plasma-enhanced chemical vapor deposition (PECVD) deposited hydrogenated amorphous silicon (a-Si:H) thin film to form the phosphorus-doped polysilicon passivated contact in tunnel oxide passivated contact (TOPCon) solar cells. The effects of annealing temperature, annealing time, cooling time, and the polysilicon thickness on the surface passivation are investigated. The primary advantage of the RTA is reducing the whole crystallization period to ~15 min, shorter than the conventional tube-furnace annealing period of >60 min. We find that the RTA is a robust method to prepare high-quality polysilicon passivated contact without introducing blistering when the thickness of the a-Si:H is less than 40 nm. The optimized RTA process leads to an implied open-circuit voltage (iVoc) of 712 mV and a single-sided dark saturation current density (J0,s) of 12.5 fA/cm2 in the as-annealed state, which is inferior to the surface passivation of the controlled one prepared by a tube furnace annealing. Fortunately, a subsequent Al2O3 capping hydrogenation improves the iVoc and J0,s to 727 mV and 4.7 fA/cm2, respectively. The champion conversion efficiency of 23.04% (Voc = 679.0 mV, Jsc = 41.97 mA/cm2 and FF = 80.86%) is achieved, which demonstrates the effectiveness of RTA for preparing a high-efficiency polysilicon passivated-contact solar cell. •N-type polysilicon passivated contact structure annealed by Rapid-Thermal Anneal (RTA) is studied.•The effects of the annealing temperature, annealing time, cooling time, polysilicon thickness on surface passivation are investigated.•The whole crystallization period of RTA is reduced to ~15 min with the best iVoc of 727 mV and J0,s of 4.7 fA/cm2 after hydrogenation.•Limiting polysilicon thickness to less than 40 nm helps to avoid blistering.•The polysilicon passivated-contact solar cell prepared using RTA shows a champion conversion efficiency of 23.04%.
doi_str_mv 10.1016/j.solmat.2020.110518
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2438221759</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0927024820301227</els_id><sourcerecordid>2438221759</sourcerecordid><originalsourceid>FETCH-LOGICAL-c400t-83e7ed7b2c50940b6c61555f336dd987a05d89ea25e86877dd878f76f327f8b63</originalsourceid><addsrcrecordid>eNp9UMtqHDEQFCGGbOz8QQ6CXJKDNnrMjDSXgDFOYjAEgn0WWqkn1jI7UtQagz_DfxyZySWXHJqii67q7iLkveB7wcXw-bjHNJ9c3UsuGyV4L8wrshNGj0yp0bwmOz5KzbjszBvyFvHIOZeD6nbk-WZhGOtK80PCVmVFFlKGQHOanzDO0aeF5gLZlUauGJdftLgcA6sPUE5upm5ZoMHHn3eXn1oTaKxIXc5N6mps6imVf90cYnx0FQJrbXW-0na_K9TDPOMFOZvcjPDuL56T-6_Xd1ff2e2PbzdXl7fMd5xXZhRoCPogfc_Hjh8GP4i-7yelhhBGox3vgxnByR7MYLQOwWgz6WFSUk_mMKhz8mHzzSX9XgGrPaa1LG2llZ0yUgrdj22q26Z8SYgFJptLPLnyZAW3L-Hbo93Cty_h2y38JvuyyaB98BihWPQRFg8hFvDVhhT_b_AHE8qSIQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2438221759</pqid></control><display><type>article</type><title>In-situ phosphorus-doped polysilicon prepared using rapid-thermal anneal (RTA) and its application for polysilicon passivated-contact solar cells</title><source>Elsevier ScienceDirect Journals</source><creator>Yang, Qing ; Liao, Mingdun ; Wang, Zhixue ; Zheng, Jingming ; lin, Yiran ; Guo, Xueqi ; Rui, Zhe ; Huang, Dandan ; Lu, Linna ; Feng, Mengmeng ; Cheng, Peihong ; Shou, Chunhui ; Zeng, Yuheng ; Yan, Baojie ; Ye, Jichun</creator><creatorcontrib>Yang, Qing ; Liao, Mingdun ; Wang, Zhixue ; Zheng, Jingming ; lin, Yiran ; Guo, Xueqi ; Rui, Zhe ; Huang, Dandan ; Lu, Linna ; Feng, Mengmeng ; Cheng, Peihong ; Shou, Chunhui ; Zeng, Yuheng ; Yan, Baojie ; Ye, Jichun</creatorcontrib><description>A rapid thermal anneal (RTA) is used to crystallize the plasma-enhanced chemical vapor deposition (PECVD) deposited hydrogenated amorphous silicon (a-Si:H) thin film to form the phosphorus-doped polysilicon passivated contact in tunnel oxide passivated contact (TOPCon) solar cells. The effects of annealing temperature, annealing time, cooling time, and the polysilicon thickness on the surface passivation are investigated. The primary advantage of the RTA is reducing the whole crystallization period to ~15 min, shorter than the conventional tube-furnace annealing period of &gt;60 min. We find that the RTA is a robust method to prepare high-quality polysilicon passivated contact without introducing blistering when the thickness of the a-Si:H is less than 40 nm. The optimized RTA process leads to an implied open-circuit voltage (iVoc) of 712 mV and a single-sided dark saturation current density (J0,s) of 12.5 fA/cm2 in the as-annealed state, which is inferior to the surface passivation of the controlled one prepared by a tube furnace annealing. Fortunately, a subsequent Al2O3 capping hydrogenation improves the iVoc and J0,s to 727 mV and 4.7 fA/cm2, respectively. The champion conversion efficiency of 23.04% (Voc = 679.0 mV, Jsc = 41.97 mA/cm2 and FF = 80.86%) is achieved, which demonstrates the effectiveness of RTA for preparing a high-efficiency polysilicon passivated-contact solar cell. •N-type polysilicon passivated contact structure annealed by Rapid-Thermal Anneal (RTA) is studied.•The effects of the annealing temperature, annealing time, cooling time, polysilicon thickness on surface passivation are investigated.•The whole crystallization period of RTA is reduced to ~15 min with the best iVoc of 727 mV and J0,s of 4.7 fA/cm2 after hydrogenation.•Limiting polysilicon thickness to less than 40 nm helps to avoid blistering.•The polysilicon passivated-contact solar cell prepared using RTA shows a champion conversion efficiency of 23.04%.</description><identifier>ISSN: 0927-0248</identifier><identifier>EISSN: 1879-3398</identifier><identifier>DOI: 10.1016/j.solmat.2020.110518</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Aluminum oxide ; Amorphous silicon ; Annealing ; Annealing furnaces ; Blistering ; c-Si ; Circuits ; Cooling effects ; Crystallization ; Dark current ; Open circuit voltage ; Passivity ; PECVD ; Phosphorus ; Photovoltaic cells ; Plasma enhanced chemical vapor deposition ; Polysilicon ; Polysilicon passivated contact ; Rapid thermal anneal (RTA) ; Solar cell ; Solar cells ; Thickness ; Thin films ; TOPCon ; Tube furnaces</subject><ispartof>Solar energy materials and solar cells, 2020-06, Vol.210, p.110518, Article 110518</ispartof><rights>2020 Elsevier B.V.</rights><rights>Copyright Elsevier BV Jun 15, 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c400t-83e7ed7b2c50940b6c61555f336dd987a05d89ea25e86877dd878f76f327f8b63</citedby><cites>FETCH-LOGICAL-c400t-83e7ed7b2c50940b6c61555f336dd987a05d89ea25e86877dd878f76f327f8b63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0927024820301227$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Yang, Qing</creatorcontrib><creatorcontrib>Liao, Mingdun</creatorcontrib><creatorcontrib>Wang, Zhixue</creatorcontrib><creatorcontrib>Zheng, Jingming</creatorcontrib><creatorcontrib>lin, Yiran</creatorcontrib><creatorcontrib>Guo, Xueqi</creatorcontrib><creatorcontrib>Rui, Zhe</creatorcontrib><creatorcontrib>Huang, Dandan</creatorcontrib><creatorcontrib>Lu, Linna</creatorcontrib><creatorcontrib>Feng, Mengmeng</creatorcontrib><creatorcontrib>Cheng, Peihong</creatorcontrib><creatorcontrib>Shou, Chunhui</creatorcontrib><creatorcontrib>Zeng, Yuheng</creatorcontrib><creatorcontrib>Yan, Baojie</creatorcontrib><creatorcontrib>Ye, Jichun</creatorcontrib><title>In-situ phosphorus-doped polysilicon prepared using rapid-thermal anneal (RTA) and its application for polysilicon passivated-contact solar cells</title><title>Solar energy materials and solar cells</title><description>A rapid thermal anneal (RTA) is used to crystallize the plasma-enhanced chemical vapor deposition (PECVD) deposited hydrogenated amorphous silicon (a-Si:H) thin film to form the phosphorus-doped polysilicon passivated contact in tunnel oxide passivated contact (TOPCon) solar cells. The effects of annealing temperature, annealing time, cooling time, and the polysilicon thickness on the surface passivation are investigated. The primary advantage of the RTA is reducing the whole crystallization period to ~15 min, shorter than the conventional tube-furnace annealing period of &gt;60 min. We find that the RTA is a robust method to prepare high-quality polysilicon passivated contact without introducing blistering when the thickness of the a-Si:H is less than 40 nm. The optimized RTA process leads to an implied open-circuit voltage (iVoc) of 712 mV and a single-sided dark saturation current density (J0,s) of 12.5 fA/cm2 in the as-annealed state, which is inferior to the surface passivation of the controlled one prepared by a tube furnace annealing. Fortunately, a subsequent Al2O3 capping hydrogenation improves the iVoc and J0,s to 727 mV and 4.7 fA/cm2, respectively. The champion conversion efficiency of 23.04% (Voc = 679.0 mV, Jsc = 41.97 mA/cm2 and FF = 80.86%) is achieved, which demonstrates the effectiveness of RTA for preparing a high-efficiency polysilicon passivated-contact solar cell. •N-type polysilicon passivated contact structure annealed by Rapid-Thermal Anneal (RTA) is studied.•The effects of the annealing temperature, annealing time, cooling time, polysilicon thickness on surface passivation are investigated.•The whole crystallization period of RTA is reduced to ~15 min with the best iVoc of 727 mV and J0,s of 4.7 fA/cm2 after hydrogenation.•Limiting polysilicon thickness to less than 40 nm helps to avoid blistering.•The polysilicon passivated-contact solar cell prepared using RTA shows a champion conversion efficiency of 23.04%.</description><subject>Aluminum oxide</subject><subject>Amorphous silicon</subject><subject>Annealing</subject><subject>Annealing furnaces</subject><subject>Blistering</subject><subject>c-Si</subject><subject>Circuits</subject><subject>Cooling effects</subject><subject>Crystallization</subject><subject>Dark current</subject><subject>Open circuit voltage</subject><subject>Passivity</subject><subject>PECVD</subject><subject>Phosphorus</subject><subject>Photovoltaic cells</subject><subject>Plasma enhanced chemical vapor deposition</subject><subject>Polysilicon</subject><subject>Polysilicon passivated contact</subject><subject>Rapid thermal anneal (RTA)</subject><subject>Solar cell</subject><subject>Solar cells</subject><subject>Thickness</subject><subject>Thin films</subject><subject>TOPCon</subject><subject>Tube furnaces</subject><issn>0927-0248</issn><issn>1879-3398</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9UMtqHDEQFCGGbOz8QQ6CXJKDNnrMjDSXgDFOYjAEgn0WWqkn1jI7UtQagz_DfxyZySWXHJqii67q7iLkveB7wcXw-bjHNJ9c3UsuGyV4L8wrshNGj0yp0bwmOz5KzbjszBvyFvHIOZeD6nbk-WZhGOtK80PCVmVFFlKGQHOanzDO0aeF5gLZlUauGJdftLgcA6sPUE5upm5ZoMHHn3eXn1oTaKxIXc5N6mps6imVf90cYnx0FQJrbXW-0na_K9TDPOMFOZvcjPDuL56T-6_Xd1ff2e2PbzdXl7fMd5xXZhRoCPogfc_Hjh8GP4i-7yelhhBGox3vgxnByR7MYLQOwWgz6WFSUk_mMKhz8mHzzSX9XgGrPaa1LG2llZ0yUgrdj22q26Z8SYgFJptLPLnyZAW3L-Hbo93Cty_h2y38JvuyyaB98BihWPQRFg8hFvDVhhT_b_AHE8qSIQ</recordid><startdate>20200615</startdate><enddate>20200615</enddate><creator>Yang, Qing</creator><creator>Liao, Mingdun</creator><creator>Wang, Zhixue</creator><creator>Zheng, Jingming</creator><creator>lin, Yiran</creator><creator>Guo, Xueqi</creator><creator>Rui, Zhe</creator><creator>Huang, Dandan</creator><creator>Lu, Linna</creator><creator>Feng, Mengmeng</creator><creator>Cheng, Peihong</creator><creator>Shou, Chunhui</creator><creator>Zeng, Yuheng</creator><creator>Yan, Baojie</creator><creator>Ye, Jichun</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7ST</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>L7M</scope><scope>SOI</scope></search><sort><creationdate>20200615</creationdate><title>In-situ phosphorus-doped polysilicon prepared using rapid-thermal anneal (RTA) and its application for polysilicon passivated-contact solar cells</title><author>Yang, Qing ; Liao, Mingdun ; Wang, Zhixue ; Zheng, Jingming ; lin, Yiran ; Guo, Xueqi ; Rui, Zhe ; Huang, Dandan ; Lu, Linna ; Feng, Mengmeng ; Cheng, Peihong ; Shou, Chunhui ; Zeng, Yuheng ; Yan, Baojie ; Ye, Jichun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c400t-83e7ed7b2c50940b6c61555f336dd987a05d89ea25e86877dd878f76f327f8b63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Aluminum oxide</topic><topic>Amorphous silicon</topic><topic>Annealing</topic><topic>Annealing furnaces</topic><topic>Blistering</topic><topic>c-Si</topic><topic>Circuits</topic><topic>Cooling effects</topic><topic>Crystallization</topic><topic>Dark current</topic><topic>Open circuit voltage</topic><topic>Passivity</topic><topic>PECVD</topic><topic>Phosphorus</topic><topic>Photovoltaic cells</topic><topic>Plasma enhanced chemical vapor deposition</topic><topic>Polysilicon</topic><topic>Polysilicon passivated contact</topic><topic>Rapid thermal anneal (RTA)</topic><topic>Solar cell</topic><topic>Solar cells</topic><topic>Thickness</topic><topic>Thin films</topic><topic>TOPCon</topic><topic>Tube furnaces</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Qing</creatorcontrib><creatorcontrib>Liao, Mingdun</creatorcontrib><creatorcontrib>Wang, Zhixue</creatorcontrib><creatorcontrib>Zheng, Jingming</creatorcontrib><creatorcontrib>lin, Yiran</creatorcontrib><creatorcontrib>Guo, Xueqi</creatorcontrib><creatorcontrib>Rui, Zhe</creatorcontrib><creatorcontrib>Huang, Dandan</creatorcontrib><creatorcontrib>Lu, Linna</creatorcontrib><creatorcontrib>Feng, Mengmeng</creatorcontrib><creatorcontrib>Cheng, Peihong</creatorcontrib><creatorcontrib>Shou, Chunhui</creatorcontrib><creatorcontrib>Zeng, Yuheng</creatorcontrib><creatorcontrib>Yan, Baojie</creatorcontrib><creatorcontrib>Ye, Jichun</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Environment Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Solar energy materials and solar cells</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Qing</au><au>Liao, Mingdun</au><au>Wang, Zhixue</au><au>Zheng, Jingming</au><au>lin, Yiran</au><au>Guo, Xueqi</au><au>Rui, Zhe</au><au>Huang, Dandan</au><au>Lu, Linna</au><au>Feng, Mengmeng</au><au>Cheng, Peihong</au><au>Shou, Chunhui</au><au>Zeng, Yuheng</au><au>Yan, Baojie</au><au>Ye, Jichun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>In-situ phosphorus-doped polysilicon prepared using rapid-thermal anneal (RTA) and its application for polysilicon passivated-contact solar cells</atitle><jtitle>Solar energy materials and solar cells</jtitle><date>2020-06-15</date><risdate>2020</risdate><volume>210</volume><spage>110518</spage><pages>110518-</pages><artnum>110518</artnum><issn>0927-0248</issn><eissn>1879-3398</eissn><abstract>A rapid thermal anneal (RTA) is used to crystallize the plasma-enhanced chemical vapor deposition (PECVD) deposited hydrogenated amorphous silicon (a-Si:H) thin film to form the phosphorus-doped polysilicon passivated contact in tunnel oxide passivated contact (TOPCon) solar cells. The effects of annealing temperature, annealing time, cooling time, and the polysilicon thickness on the surface passivation are investigated. The primary advantage of the RTA is reducing the whole crystallization period to ~15 min, shorter than the conventional tube-furnace annealing period of &gt;60 min. We find that the RTA is a robust method to prepare high-quality polysilicon passivated contact without introducing blistering when the thickness of the a-Si:H is less than 40 nm. The optimized RTA process leads to an implied open-circuit voltage (iVoc) of 712 mV and a single-sided dark saturation current density (J0,s) of 12.5 fA/cm2 in the as-annealed state, which is inferior to the surface passivation of the controlled one prepared by a tube furnace annealing. Fortunately, a subsequent Al2O3 capping hydrogenation improves the iVoc and J0,s to 727 mV and 4.7 fA/cm2, respectively. The champion conversion efficiency of 23.04% (Voc = 679.0 mV, Jsc = 41.97 mA/cm2 and FF = 80.86%) is achieved, which demonstrates the effectiveness of RTA for preparing a high-efficiency polysilicon passivated-contact solar cell. •N-type polysilicon passivated contact structure annealed by Rapid-Thermal Anneal (RTA) is studied.•The effects of the annealing temperature, annealing time, cooling time, polysilicon thickness on surface passivation are investigated.•The whole crystallization period of RTA is reduced to ~15 min with the best iVoc of 727 mV and J0,s of 4.7 fA/cm2 after hydrogenation.•Limiting polysilicon thickness to less than 40 nm helps to avoid blistering.•The polysilicon passivated-contact solar cell prepared using RTA shows a champion conversion efficiency of 23.04%.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.solmat.2020.110518</doi></addata></record>
fulltext fulltext
identifier ISSN: 0927-0248
ispartof Solar energy materials and solar cells, 2020-06, Vol.210, p.110518, Article 110518
issn 0927-0248
1879-3398
language eng
recordid cdi_proquest_journals_2438221759
source Elsevier ScienceDirect Journals
subjects Aluminum oxide
Amorphous silicon
Annealing
Annealing furnaces
Blistering
c-Si
Circuits
Cooling effects
Crystallization
Dark current
Open circuit voltage
Passivity
PECVD
Phosphorus
Photovoltaic cells
Plasma enhanced chemical vapor deposition
Polysilicon
Polysilicon passivated contact
Rapid thermal anneal (RTA)
Solar cell
Solar cells
Thickness
Thin films
TOPCon
Tube furnaces
title In-situ phosphorus-doped polysilicon prepared using rapid-thermal anneal (RTA) and its application for polysilicon passivated-contact solar cells
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T17%3A06%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=In-situ%20phosphorus-doped%20polysilicon%20prepared%20using%20rapid-thermal%20anneal%20(RTA)%20and%20its%20application%20for%20polysilicon%20passivated-contact%20solar%20cells&rft.jtitle=Solar%20energy%20materials%20and%20solar%20cells&rft.au=Yang,%20Qing&rft.date=2020-06-15&rft.volume=210&rft.spage=110518&rft.pages=110518-&rft.artnum=110518&rft.issn=0927-0248&rft.eissn=1879-3398&rft_id=info:doi/10.1016/j.solmat.2020.110518&rft_dat=%3Cproquest_cross%3E2438221759%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2438221759&rft_id=info:pmid/&rft_els_id=S0927024820301227&rfr_iscdi=true