In-situ phosphorus-doped polysilicon prepared using rapid-thermal anneal (RTA) and its application for polysilicon passivated-contact solar cells
A rapid thermal anneal (RTA) is used to crystallize the plasma-enhanced chemical vapor deposition (PECVD) deposited hydrogenated amorphous silicon (a-Si:H) thin film to form the phosphorus-doped polysilicon passivated contact in tunnel oxide passivated contact (TOPCon) solar cells. The effects of an...
Gespeichert in:
Veröffentlicht in: | Solar energy materials and solar cells 2020-06, Vol.210, p.110518, Article 110518 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 110518 |
container_title | Solar energy materials and solar cells |
container_volume | 210 |
creator | Yang, Qing Liao, Mingdun Wang, Zhixue Zheng, Jingming lin, Yiran Guo, Xueqi Rui, Zhe Huang, Dandan Lu, Linna Feng, Mengmeng Cheng, Peihong Shou, Chunhui Zeng, Yuheng Yan, Baojie Ye, Jichun |
description | A rapid thermal anneal (RTA) is used to crystallize the plasma-enhanced chemical vapor deposition (PECVD) deposited hydrogenated amorphous silicon (a-Si:H) thin film to form the phosphorus-doped polysilicon passivated contact in tunnel oxide passivated contact (TOPCon) solar cells. The effects of annealing temperature, annealing time, cooling time, and the polysilicon thickness on the surface passivation are investigated. The primary advantage of the RTA is reducing the whole crystallization period to ~15 min, shorter than the conventional tube-furnace annealing period of >60 min. We find that the RTA is a robust method to prepare high-quality polysilicon passivated contact without introducing blistering when the thickness of the a-Si:H is less than 40 nm. The optimized RTA process leads to an implied open-circuit voltage (iVoc) of 712 mV and a single-sided dark saturation current density (J0,s) of 12.5 fA/cm2 in the as-annealed state, which is inferior to the surface passivation of the controlled one prepared by a tube furnace annealing. Fortunately, a subsequent Al2O3 capping hydrogenation improves the iVoc and J0,s to 727 mV and 4.7 fA/cm2, respectively. The champion conversion efficiency of 23.04% (Voc = 679.0 mV, Jsc = 41.97 mA/cm2 and FF = 80.86%) is achieved, which demonstrates the effectiveness of RTA for preparing a high-efficiency polysilicon passivated-contact solar cell.
•N-type polysilicon passivated contact structure annealed by Rapid-Thermal Anneal (RTA) is studied.•The effects of the annealing temperature, annealing time, cooling time, polysilicon thickness on surface passivation are investigated.•The whole crystallization period of RTA is reduced to ~15 min with the best iVoc of 727 mV and J0,s of 4.7 fA/cm2 after hydrogenation.•Limiting polysilicon thickness to less than 40 nm helps to avoid blistering.•The polysilicon passivated-contact solar cell prepared using RTA shows a champion conversion efficiency of 23.04%. |
doi_str_mv | 10.1016/j.solmat.2020.110518 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2438221759</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0927024820301227</els_id><sourcerecordid>2438221759</sourcerecordid><originalsourceid>FETCH-LOGICAL-c400t-83e7ed7b2c50940b6c61555f336dd987a05d89ea25e86877dd878f76f327f8b63</originalsourceid><addsrcrecordid>eNp9UMtqHDEQFCGGbOz8QQ6CXJKDNnrMjDSXgDFOYjAEgn0WWqkn1jI7UtQagz_DfxyZySWXHJqii67q7iLkveB7wcXw-bjHNJ9c3UsuGyV4L8wrshNGj0yp0bwmOz5KzbjszBvyFvHIOZeD6nbk-WZhGOtK80PCVmVFFlKGQHOanzDO0aeF5gLZlUauGJdftLgcA6sPUE5upm5ZoMHHn3eXn1oTaKxIXc5N6mps6imVf90cYnx0FQJrbXW-0na_K9TDPOMFOZvcjPDuL56T-6_Xd1ff2e2PbzdXl7fMd5xXZhRoCPogfc_Hjh8GP4i-7yelhhBGox3vgxnByR7MYLQOwWgz6WFSUk_mMKhz8mHzzSX9XgGrPaa1LG2llZ0yUgrdj22q26Z8SYgFJptLPLnyZAW3L-Hbo93Cty_h2y38JvuyyaB98BihWPQRFg8hFvDVhhT_b_AHE8qSIQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2438221759</pqid></control><display><type>article</type><title>In-situ phosphorus-doped polysilicon prepared using rapid-thermal anneal (RTA) and its application for polysilicon passivated-contact solar cells</title><source>Elsevier ScienceDirect Journals</source><creator>Yang, Qing ; Liao, Mingdun ; Wang, Zhixue ; Zheng, Jingming ; lin, Yiran ; Guo, Xueqi ; Rui, Zhe ; Huang, Dandan ; Lu, Linna ; Feng, Mengmeng ; Cheng, Peihong ; Shou, Chunhui ; Zeng, Yuheng ; Yan, Baojie ; Ye, Jichun</creator><creatorcontrib>Yang, Qing ; Liao, Mingdun ; Wang, Zhixue ; Zheng, Jingming ; lin, Yiran ; Guo, Xueqi ; Rui, Zhe ; Huang, Dandan ; Lu, Linna ; Feng, Mengmeng ; Cheng, Peihong ; Shou, Chunhui ; Zeng, Yuheng ; Yan, Baojie ; Ye, Jichun</creatorcontrib><description>A rapid thermal anneal (RTA) is used to crystallize the plasma-enhanced chemical vapor deposition (PECVD) deposited hydrogenated amorphous silicon (a-Si:H) thin film to form the phosphorus-doped polysilicon passivated contact in tunnel oxide passivated contact (TOPCon) solar cells. The effects of annealing temperature, annealing time, cooling time, and the polysilicon thickness on the surface passivation are investigated. The primary advantage of the RTA is reducing the whole crystallization period to ~15 min, shorter than the conventional tube-furnace annealing period of >60 min. We find that the RTA is a robust method to prepare high-quality polysilicon passivated contact without introducing blistering when the thickness of the a-Si:H is less than 40 nm. The optimized RTA process leads to an implied open-circuit voltage (iVoc) of 712 mV and a single-sided dark saturation current density (J0,s) of 12.5 fA/cm2 in the as-annealed state, which is inferior to the surface passivation of the controlled one prepared by a tube furnace annealing. Fortunately, a subsequent Al2O3 capping hydrogenation improves the iVoc and J0,s to 727 mV and 4.7 fA/cm2, respectively. The champion conversion efficiency of 23.04% (Voc = 679.0 mV, Jsc = 41.97 mA/cm2 and FF = 80.86%) is achieved, which demonstrates the effectiveness of RTA for preparing a high-efficiency polysilicon passivated-contact solar cell.
•N-type polysilicon passivated contact structure annealed by Rapid-Thermal Anneal (RTA) is studied.•The effects of the annealing temperature, annealing time, cooling time, polysilicon thickness on surface passivation are investigated.•The whole crystallization period of RTA is reduced to ~15 min with the best iVoc of 727 mV and J0,s of 4.7 fA/cm2 after hydrogenation.•Limiting polysilicon thickness to less than 40 nm helps to avoid blistering.•The polysilicon passivated-contact solar cell prepared using RTA shows a champion conversion efficiency of 23.04%.</description><identifier>ISSN: 0927-0248</identifier><identifier>EISSN: 1879-3398</identifier><identifier>DOI: 10.1016/j.solmat.2020.110518</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Aluminum oxide ; Amorphous silicon ; Annealing ; Annealing furnaces ; Blistering ; c-Si ; Circuits ; Cooling effects ; Crystallization ; Dark current ; Open circuit voltage ; Passivity ; PECVD ; Phosphorus ; Photovoltaic cells ; Plasma enhanced chemical vapor deposition ; Polysilicon ; Polysilicon passivated contact ; Rapid thermal anneal (RTA) ; Solar cell ; Solar cells ; Thickness ; Thin films ; TOPCon ; Tube furnaces</subject><ispartof>Solar energy materials and solar cells, 2020-06, Vol.210, p.110518, Article 110518</ispartof><rights>2020 Elsevier B.V.</rights><rights>Copyright Elsevier BV Jun 15, 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c400t-83e7ed7b2c50940b6c61555f336dd987a05d89ea25e86877dd878f76f327f8b63</citedby><cites>FETCH-LOGICAL-c400t-83e7ed7b2c50940b6c61555f336dd987a05d89ea25e86877dd878f76f327f8b63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0927024820301227$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Yang, Qing</creatorcontrib><creatorcontrib>Liao, Mingdun</creatorcontrib><creatorcontrib>Wang, Zhixue</creatorcontrib><creatorcontrib>Zheng, Jingming</creatorcontrib><creatorcontrib>lin, Yiran</creatorcontrib><creatorcontrib>Guo, Xueqi</creatorcontrib><creatorcontrib>Rui, Zhe</creatorcontrib><creatorcontrib>Huang, Dandan</creatorcontrib><creatorcontrib>Lu, Linna</creatorcontrib><creatorcontrib>Feng, Mengmeng</creatorcontrib><creatorcontrib>Cheng, Peihong</creatorcontrib><creatorcontrib>Shou, Chunhui</creatorcontrib><creatorcontrib>Zeng, Yuheng</creatorcontrib><creatorcontrib>Yan, Baojie</creatorcontrib><creatorcontrib>Ye, Jichun</creatorcontrib><title>In-situ phosphorus-doped polysilicon prepared using rapid-thermal anneal (RTA) and its application for polysilicon passivated-contact solar cells</title><title>Solar energy materials and solar cells</title><description>A rapid thermal anneal (RTA) is used to crystallize the plasma-enhanced chemical vapor deposition (PECVD) deposited hydrogenated amorphous silicon (a-Si:H) thin film to form the phosphorus-doped polysilicon passivated contact in tunnel oxide passivated contact (TOPCon) solar cells. The effects of annealing temperature, annealing time, cooling time, and the polysilicon thickness on the surface passivation are investigated. The primary advantage of the RTA is reducing the whole crystallization period to ~15 min, shorter than the conventional tube-furnace annealing period of >60 min. We find that the RTA is a robust method to prepare high-quality polysilicon passivated contact without introducing blistering when the thickness of the a-Si:H is less than 40 nm. The optimized RTA process leads to an implied open-circuit voltage (iVoc) of 712 mV and a single-sided dark saturation current density (J0,s) of 12.5 fA/cm2 in the as-annealed state, which is inferior to the surface passivation of the controlled one prepared by a tube furnace annealing. Fortunately, a subsequent Al2O3 capping hydrogenation improves the iVoc and J0,s to 727 mV and 4.7 fA/cm2, respectively. The champion conversion efficiency of 23.04% (Voc = 679.0 mV, Jsc = 41.97 mA/cm2 and FF = 80.86%) is achieved, which demonstrates the effectiveness of RTA for preparing a high-efficiency polysilicon passivated-contact solar cell.
•N-type polysilicon passivated contact structure annealed by Rapid-Thermal Anneal (RTA) is studied.•The effects of the annealing temperature, annealing time, cooling time, polysilicon thickness on surface passivation are investigated.•The whole crystallization period of RTA is reduced to ~15 min with the best iVoc of 727 mV and J0,s of 4.7 fA/cm2 after hydrogenation.•Limiting polysilicon thickness to less than 40 nm helps to avoid blistering.•The polysilicon passivated-contact solar cell prepared using RTA shows a champion conversion efficiency of 23.04%.</description><subject>Aluminum oxide</subject><subject>Amorphous silicon</subject><subject>Annealing</subject><subject>Annealing furnaces</subject><subject>Blistering</subject><subject>c-Si</subject><subject>Circuits</subject><subject>Cooling effects</subject><subject>Crystallization</subject><subject>Dark current</subject><subject>Open circuit voltage</subject><subject>Passivity</subject><subject>PECVD</subject><subject>Phosphorus</subject><subject>Photovoltaic cells</subject><subject>Plasma enhanced chemical vapor deposition</subject><subject>Polysilicon</subject><subject>Polysilicon passivated contact</subject><subject>Rapid thermal anneal (RTA)</subject><subject>Solar cell</subject><subject>Solar cells</subject><subject>Thickness</subject><subject>Thin films</subject><subject>TOPCon</subject><subject>Tube furnaces</subject><issn>0927-0248</issn><issn>1879-3398</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9UMtqHDEQFCGGbOz8QQ6CXJKDNnrMjDSXgDFOYjAEgn0WWqkn1jI7UtQagz_DfxyZySWXHJqii67q7iLkveB7wcXw-bjHNJ9c3UsuGyV4L8wrshNGj0yp0bwmOz5KzbjszBvyFvHIOZeD6nbk-WZhGOtK80PCVmVFFlKGQHOanzDO0aeF5gLZlUauGJdftLgcA6sPUE5upm5ZoMHHn3eXn1oTaKxIXc5N6mps6imVf90cYnx0FQJrbXW-0na_K9TDPOMFOZvcjPDuL56T-6_Xd1ff2e2PbzdXl7fMd5xXZhRoCPogfc_Hjh8GP4i-7yelhhBGox3vgxnByR7MYLQOwWgz6WFSUk_mMKhz8mHzzSX9XgGrPaa1LG2llZ0yUgrdj22q26Z8SYgFJptLPLnyZAW3L-Hbo93Cty_h2y38JvuyyaB98BihWPQRFg8hFvDVhhT_b_AHE8qSIQ</recordid><startdate>20200615</startdate><enddate>20200615</enddate><creator>Yang, Qing</creator><creator>Liao, Mingdun</creator><creator>Wang, Zhixue</creator><creator>Zheng, Jingming</creator><creator>lin, Yiran</creator><creator>Guo, Xueqi</creator><creator>Rui, Zhe</creator><creator>Huang, Dandan</creator><creator>Lu, Linna</creator><creator>Feng, Mengmeng</creator><creator>Cheng, Peihong</creator><creator>Shou, Chunhui</creator><creator>Zeng, Yuheng</creator><creator>Yan, Baojie</creator><creator>Ye, Jichun</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7ST</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>L7M</scope><scope>SOI</scope></search><sort><creationdate>20200615</creationdate><title>In-situ phosphorus-doped polysilicon prepared using rapid-thermal anneal (RTA) and its application for polysilicon passivated-contact solar cells</title><author>Yang, Qing ; Liao, Mingdun ; Wang, Zhixue ; Zheng, Jingming ; lin, Yiran ; Guo, Xueqi ; Rui, Zhe ; Huang, Dandan ; Lu, Linna ; Feng, Mengmeng ; Cheng, Peihong ; Shou, Chunhui ; Zeng, Yuheng ; Yan, Baojie ; Ye, Jichun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c400t-83e7ed7b2c50940b6c61555f336dd987a05d89ea25e86877dd878f76f327f8b63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Aluminum oxide</topic><topic>Amorphous silicon</topic><topic>Annealing</topic><topic>Annealing furnaces</topic><topic>Blistering</topic><topic>c-Si</topic><topic>Circuits</topic><topic>Cooling effects</topic><topic>Crystallization</topic><topic>Dark current</topic><topic>Open circuit voltage</topic><topic>Passivity</topic><topic>PECVD</topic><topic>Phosphorus</topic><topic>Photovoltaic cells</topic><topic>Plasma enhanced chemical vapor deposition</topic><topic>Polysilicon</topic><topic>Polysilicon passivated contact</topic><topic>Rapid thermal anneal (RTA)</topic><topic>Solar cell</topic><topic>Solar cells</topic><topic>Thickness</topic><topic>Thin films</topic><topic>TOPCon</topic><topic>Tube furnaces</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Qing</creatorcontrib><creatorcontrib>Liao, Mingdun</creatorcontrib><creatorcontrib>Wang, Zhixue</creatorcontrib><creatorcontrib>Zheng, Jingming</creatorcontrib><creatorcontrib>lin, Yiran</creatorcontrib><creatorcontrib>Guo, Xueqi</creatorcontrib><creatorcontrib>Rui, Zhe</creatorcontrib><creatorcontrib>Huang, Dandan</creatorcontrib><creatorcontrib>Lu, Linna</creatorcontrib><creatorcontrib>Feng, Mengmeng</creatorcontrib><creatorcontrib>Cheng, Peihong</creatorcontrib><creatorcontrib>Shou, Chunhui</creatorcontrib><creatorcontrib>Zeng, Yuheng</creatorcontrib><creatorcontrib>Yan, Baojie</creatorcontrib><creatorcontrib>Ye, Jichun</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Environment Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Solar energy materials and solar cells</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Qing</au><au>Liao, Mingdun</au><au>Wang, Zhixue</au><au>Zheng, Jingming</au><au>lin, Yiran</au><au>Guo, Xueqi</au><au>Rui, Zhe</au><au>Huang, Dandan</au><au>Lu, Linna</au><au>Feng, Mengmeng</au><au>Cheng, Peihong</au><au>Shou, Chunhui</au><au>Zeng, Yuheng</au><au>Yan, Baojie</au><au>Ye, Jichun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>In-situ phosphorus-doped polysilicon prepared using rapid-thermal anneal (RTA) and its application for polysilicon passivated-contact solar cells</atitle><jtitle>Solar energy materials and solar cells</jtitle><date>2020-06-15</date><risdate>2020</risdate><volume>210</volume><spage>110518</spage><pages>110518-</pages><artnum>110518</artnum><issn>0927-0248</issn><eissn>1879-3398</eissn><abstract>A rapid thermal anneal (RTA) is used to crystallize the plasma-enhanced chemical vapor deposition (PECVD) deposited hydrogenated amorphous silicon (a-Si:H) thin film to form the phosphorus-doped polysilicon passivated contact in tunnel oxide passivated contact (TOPCon) solar cells. The effects of annealing temperature, annealing time, cooling time, and the polysilicon thickness on the surface passivation are investigated. The primary advantage of the RTA is reducing the whole crystallization period to ~15 min, shorter than the conventional tube-furnace annealing period of >60 min. We find that the RTA is a robust method to prepare high-quality polysilicon passivated contact without introducing blistering when the thickness of the a-Si:H is less than 40 nm. The optimized RTA process leads to an implied open-circuit voltage (iVoc) of 712 mV and a single-sided dark saturation current density (J0,s) of 12.5 fA/cm2 in the as-annealed state, which is inferior to the surface passivation of the controlled one prepared by a tube furnace annealing. Fortunately, a subsequent Al2O3 capping hydrogenation improves the iVoc and J0,s to 727 mV and 4.7 fA/cm2, respectively. The champion conversion efficiency of 23.04% (Voc = 679.0 mV, Jsc = 41.97 mA/cm2 and FF = 80.86%) is achieved, which demonstrates the effectiveness of RTA for preparing a high-efficiency polysilicon passivated-contact solar cell.
•N-type polysilicon passivated contact structure annealed by Rapid-Thermal Anneal (RTA) is studied.•The effects of the annealing temperature, annealing time, cooling time, polysilicon thickness on surface passivation are investigated.•The whole crystallization period of RTA is reduced to ~15 min with the best iVoc of 727 mV and J0,s of 4.7 fA/cm2 after hydrogenation.•Limiting polysilicon thickness to less than 40 nm helps to avoid blistering.•The polysilicon passivated-contact solar cell prepared using RTA shows a champion conversion efficiency of 23.04%.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.solmat.2020.110518</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0927-0248 |
ispartof | Solar energy materials and solar cells, 2020-06, Vol.210, p.110518, Article 110518 |
issn | 0927-0248 1879-3398 |
language | eng |
recordid | cdi_proquest_journals_2438221759 |
source | Elsevier ScienceDirect Journals |
subjects | Aluminum oxide Amorphous silicon Annealing Annealing furnaces Blistering c-Si Circuits Cooling effects Crystallization Dark current Open circuit voltage Passivity PECVD Phosphorus Photovoltaic cells Plasma enhanced chemical vapor deposition Polysilicon Polysilicon passivated contact Rapid thermal anneal (RTA) Solar cell Solar cells Thickness Thin films TOPCon Tube furnaces |
title | In-situ phosphorus-doped polysilicon prepared using rapid-thermal anneal (RTA) and its application for polysilicon passivated-contact solar cells |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T17%3A06%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=In-situ%20phosphorus-doped%20polysilicon%20prepared%20using%20rapid-thermal%20anneal%20(RTA)%20and%20its%20application%20for%20polysilicon%20passivated-contact%20solar%20cells&rft.jtitle=Solar%20energy%20materials%20and%20solar%20cells&rft.au=Yang,%20Qing&rft.date=2020-06-15&rft.volume=210&rft.spage=110518&rft.pages=110518-&rft.artnum=110518&rft.issn=0927-0248&rft.eissn=1879-3398&rft_id=info:doi/10.1016/j.solmat.2020.110518&rft_dat=%3Cproquest_cross%3E2438221759%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2438221759&rft_id=info:pmid/&rft_els_id=S0927024820301227&rfr_iscdi=true |