Performance evaluation and optimization of the cooling system of a hybrid thermionic-photovoltaic converter

[Display omitted] •Experimental investigation and CFD simulation of a copper plate heat spreader.•The heat spreader cools down a novel solid-state heat-to-power converter.•A mixture of water/ethylene or cryogenic liquid nitrogen (LN) is used as coolant.•A parametric analysis is conducted of various...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Energy conversion and management 2020-04, Vol.210, p.112717, Article 112717
Hauptverfasser: Zeneli, M., Bellucci, A., Sabbatella, G., Trucchi, D.M., Nikolopoulos, A., Nikolopoulos, N., Karellas, S., Kakaras, E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 112717
container_title Energy conversion and management
container_volume 210
creator Zeneli, M.
Bellucci, A.
Sabbatella, G.
Trucchi, D.M.
Nikolopoulos, A.
Nikolopoulos, N.
Karellas, S.
Kakaras, E.
description [Display omitted] •Experimental investigation and CFD simulation of a copper plate heat spreader.•The heat spreader cools down a novel solid-state heat-to-power converter.•A mixture of water/ethylene or cryogenic liquid nitrogen (LN) is used as coolant.•A parametric analysis is conducted of various operating conditions of the system.•The cooling system can dissipate heat fluxes up to 600 W·cm−2 with LN as coolant. Hybrid thermionic-photovoltaic (TIPV) converters are efficient and clean solutions for the direct conversion of thermal energy to electricity, taking advantage of both the photovoltaic and thermionic phenomena. An important hurdle for their efficient operation is the overheating of the PV cell integrated within the TIPV anode, due to partial conversion of the emitted electron and photon fluxes to thermal heat. This obstacle needs to be overcome with an efficient, yet practical, cooler. In this work, a copper plate heat spreader is experimentally tested for TIPV cathode temperatures up to 1450 °C, whilst its performance is also assessed using a validated CFD model for temperatures up to ~2000 °C. A multi-parametric analysis is conducted testing two coolants: i) a water/ethylene glycol mixture at various temperatures (−5–40 °C) and mass flow rates (0.05–0.4 kg·s−1), and, ii) cryogenic liquid nitrogen at a temperature of −196 °C and mass flow rate of 0.074 kg·s−1. Numerical results reveal that with water/ethylene mixture the PV can withstand heat fluxes up to 360 W·cm−2, without its temperature exceeding 100 °C. For higher thermal fluxes (360–600 W·cm−2), cryogenic liquid nitrogen is found to prevent the PV overheating and, therefore, is an attractive coolant; however, it poses safety concerns due to its possible boiling. Finally, two additional cooling system designs are proposed, a heat sink with straight fins and another with copper pipes, which offer higher heat transfer areas, but are more difficult to manufacture, than the copper plate heat spreader.
doi_str_mv 10.1016/j.enconman.2020.112717
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2438221573</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0196890420302557</els_id><sourcerecordid>2438221573</sourcerecordid><originalsourceid>FETCH-LOGICAL-c406t-8e80122c1029ec01ee0c6c4ea63813dc448861bc437020d0af2ad7b3fe0ac2393</originalsourceid><addsrcrecordid>eNqFkM1LxDAQxYMouK7-C1Lw3HWSdPtxUxa_QNCDnkM2nbqpbVKTbGH9602pnj0NvPm9Gd4j5JLCigLNr9sVGmVNL82KAYsiZQUtjsiClkWVMsaKY7IAWuVpWUF2Ss68bwGAryFfkM9XdI110awwwVF2exm0NYk0dWKHoHv9PQu2ScIOE2Vtp81H4g8-YD-pMtkdtk7X09r1EdUqHXY22NF2QWoVLWZEF9Cdk5NGdh4vfueSvN_fvW0e0-eXh6fN7XOqMshDWmIJlDFFgVWogCKCylWGMucl5bXKsrLM6VZlvIhxa5ANk3Wx5Q2CVIxXfEmu5ruDs1979EG0du9MfClYxkvG6LrgkcpnSjnrvcNGDE730h0EBTEVK1rxV6yYihVzsdF4MxsxZhg1OuGVjiTW2qEKorb6vxM_gdKG9Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2438221573</pqid></control><display><type>article</type><title>Performance evaluation and optimization of the cooling system of a hybrid thermionic-photovoltaic converter</title><source>Elsevier ScienceDirect Journals</source><creator>Zeneli, M. ; Bellucci, A. ; Sabbatella, G. ; Trucchi, D.M. ; Nikolopoulos, A. ; Nikolopoulos, N. ; Karellas, S. ; Kakaras, E.</creator><creatorcontrib>Zeneli, M. ; Bellucci, A. ; Sabbatella, G. ; Trucchi, D.M. ; Nikolopoulos, A. ; Nikolopoulos, N. ; Karellas, S. ; Kakaras, E.</creatorcontrib><description>[Display omitted] •Experimental investigation and CFD simulation of a copper plate heat spreader.•The heat spreader cools down a novel solid-state heat-to-power converter.•A mixture of water/ethylene or cryogenic liquid nitrogen (LN) is used as coolant.•A parametric analysis is conducted of various operating conditions of the system.•The cooling system can dissipate heat fluxes up to 600 W·cm−2 with LN as coolant. Hybrid thermionic-photovoltaic (TIPV) converters are efficient and clean solutions for the direct conversion of thermal energy to electricity, taking advantage of both the photovoltaic and thermionic phenomena. An important hurdle for their efficient operation is the overheating of the PV cell integrated within the TIPV anode, due to partial conversion of the emitted electron and photon fluxes to thermal heat. This obstacle needs to be overcome with an efficient, yet practical, cooler. In this work, a copper plate heat spreader is experimentally tested for TIPV cathode temperatures up to 1450 °C, whilst its performance is also assessed using a validated CFD model for temperatures up to ~2000 °C. A multi-parametric analysis is conducted testing two coolants: i) a water/ethylene glycol mixture at various temperatures (−5–40 °C) and mass flow rates (0.05–0.4 kg·s−1), and, ii) cryogenic liquid nitrogen at a temperature of −196 °C and mass flow rate of 0.074 kg·s−1. Numerical results reveal that with water/ethylene mixture the PV can withstand heat fluxes up to 360 W·cm−2, without its temperature exceeding 100 °C. For higher thermal fluxes (360–600 W·cm−2), cryogenic liquid nitrogen is found to prevent the PV overheating and, therefore, is an attractive coolant; however, it poses safety concerns due to its possible boiling. Finally, two additional cooling system designs are proposed, a heat sink with straight fins and another with copper pipes, which offer higher heat transfer areas, but are more difficult to manufacture, than the copper plate heat spreader.</description><identifier>ISSN: 0196-8904</identifier><identifier>EISSN: 1879-2227</identifier><identifier>DOI: 10.1016/j.enconman.2020.112717</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Clean energy ; Computational fluid dynamics (CFD) ; Converters ; Coolants ; Cooling ; Cooling system design optimization ; Cooling systems ; Copper ; Copper plate heat spreader ; Direct conversion ; Electronic device ; Ethylene ; Ethylene glycol ; Fins ; Flow rates ; Heat ; Heat flux ; Heat sinks ; Heat transfer ; Heat transmission ; Hybrid systems ; Liquid nitrogen ; Mass flow rate ; Metal plates ; Nitrogen ; Optimization ; Overheating ; Parametric analysis ; Performance evaluation ; Photovoltaic cells ; Photovoltaics ; Temperature ; Thermal energy ; Ultra-high power density</subject><ispartof>Energy conversion and management, 2020-04, Vol.210, p.112717, Article 112717</ispartof><rights>2020 Elsevier Ltd</rights><rights>Copyright Elsevier Science Ltd. Apr 15, 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c406t-8e80122c1029ec01ee0c6c4ea63813dc448861bc437020d0af2ad7b3fe0ac2393</citedby><cites>FETCH-LOGICAL-c406t-8e80122c1029ec01ee0c6c4ea63813dc448861bc437020d0af2ad7b3fe0ac2393</cites><orcidid>0000-0002-7875-7025</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0196890420302557$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Zeneli, M.</creatorcontrib><creatorcontrib>Bellucci, A.</creatorcontrib><creatorcontrib>Sabbatella, G.</creatorcontrib><creatorcontrib>Trucchi, D.M.</creatorcontrib><creatorcontrib>Nikolopoulos, A.</creatorcontrib><creatorcontrib>Nikolopoulos, N.</creatorcontrib><creatorcontrib>Karellas, S.</creatorcontrib><creatorcontrib>Kakaras, E.</creatorcontrib><title>Performance evaluation and optimization of the cooling system of a hybrid thermionic-photovoltaic converter</title><title>Energy conversion and management</title><description>[Display omitted] •Experimental investigation and CFD simulation of a copper plate heat spreader.•The heat spreader cools down a novel solid-state heat-to-power converter.•A mixture of water/ethylene or cryogenic liquid nitrogen (LN) is used as coolant.•A parametric analysis is conducted of various operating conditions of the system.•The cooling system can dissipate heat fluxes up to 600 W·cm−2 with LN as coolant. Hybrid thermionic-photovoltaic (TIPV) converters are efficient and clean solutions for the direct conversion of thermal energy to electricity, taking advantage of both the photovoltaic and thermionic phenomena. An important hurdle for their efficient operation is the overheating of the PV cell integrated within the TIPV anode, due to partial conversion of the emitted electron and photon fluxes to thermal heat. This obstacle needs to be overcome with an efficient, yet practical, cooler. In this work, a copper plate heat spreader is experimentally tested for TIPV cathode temperatures up to 1450 °C, whilst its performance is also assessed using a validated CFD model for temperatures up to ~2000 °C. A multi-parametric analysis is conducted testing two coolants: i) a water/ethylene glycol mixture at various temperatures (−5–40 °C) and mass flow rates (0.05–0.4 kg·s−1), and, ii) cryogenic liquid nitrogen at a temperature of −196 °C and mass flow rate of 0.074 kg·s−1. Numerical results reveal that with water/ethylene mixture the PV can withstand heat fluxes up to 360 W·cm−2, without its temperature exceeding 100 °C. For higher thermal fluxes (360–600 W·cm−2), cryogenic liquid nitrogen is found to prevent the PV overheating and, therefore, is an attractive coolant; however, it poses safety concerns due to its possible boiling. Finally, two additional cooling system designs are proposed, a heat sink with straight fins and another with copper pipes, which offer higher heat transfer areas, but are more difficult to manufacture, than the copper plate heat spreader.</description><subject>Clean energy</subject><subject>Computational fluid dynamics (CFD)</subject><subject>Converters</subject><subject>Coolants</subject><subject>Cooling</subject><subject>Cooling system design optimization</subject><subject>Cooling systems</subject><subject>Copper</subject><subject>Copper plate heat spreader</subject><subject>Direct conversion</subject><subject>Electronic device</subject><subject>Ethylene</subject><subject>Ethylene glycol</subject><subject>Fins</subject><subject>Flow rates</subject><subject>Heat</subject><subject>Heat flux</subject><subject>Heat sinks</subject><subject>Heat transfer</subject><subject>Heat transmission</subject><subject>Hybrid systems</subject><subject>Liquid nitrogen</subject><subject>Mass flow rate</subject><subject>Metal plates</subject><subject>Nitrogen</subject><subject>Optimization</subject><subject>Overheating</subject><subject>Parametric analysis</subject><subject>Performance evaluation</subject><subject>Photovoltaic cells</subject><subject>Photovoltaics</subject><subject>Temperature</subject><subject>Thermal energy</subject><subject>Ultra-high power density</subject><issn>0196-8904</issn><issn>1879-2227</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqFkM1LxDAQxYMouK7-C1Lw3HWSdPtxUxa_QNCDnkM2nbqpbVKTbGH9602pnj0NvPm9Gd4j5JLCigLNr9sVGmVNL82KAYsiZQUtjsiClkWVMsaKY7IAWuVpWUF2Ss68bwGAryFfkM9XdI110awwwVF2exm0NYk0dWKHoHv9PQu2ScIOE2Vtp81H4g8-YD-pMtkdtk7X09r1EdUqHXY22NF2QWoVLWZEF9Cdk5NGdh4vfueSvN_fvW0e0-eXh6fN7XOqMshDWmIJlDFFgVWogCKCylWGMucl5bXKsrLM6VZlvIhxa5ANk3Wx5Q2CVIxXfEmu5ruDs1979EG0du9MfClYxkvG6LrgkcpnSjnrvcNGDE730h0EBTEVK1rxV6yYihVzsdF4MxsxZhg1OuGVjiTW2qEKorb6vxM_gdKG9Q</recordid><startdate>20200415</startdate><enddate>20200415</enddate><creator>Zeneli, M.</creator><creator>Bellucci, A.</creator><creator>Sabbatella, G.</creator><creator>Trucchi, D.M.</creator><creator>Nikolopoulos, A.</creator><creator>Nikolopoulos, N.</creator><creator>Karellas, S.</creator><creator>Kakaras, E.</creator><general>Elsevier Ltd</general><general>Elsevier Science Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>7TB</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0002-7875-7025</orcidid></search><sort><creationdate>20200415</creationdate><title>Performance evaluation and optimization of the cooling system of a hybrid thermionic-photovoltaic converter</title><author>Zeneli, M. ; Bellucci, A. ; Sabbatella, G. ; Trucchi, D.M. ; Nikolopoulos, A. ; Nikolopoulos, N. ; Karellas, S. ; Kakaras, E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c406t-8e80122c1029ec01ee0c6c4ea63813dc448861bc437020d0af2ad7b3fe0ac2393</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Clean energy</topic><topic>Computational fluid dynamics (CFD)</topic><topic>Converters</topic><topic>Coolants</topic><topic>Cooling</topic><topic>Cooling system design optimization</topic><topic>Cooling systems</topic><topic>Copper</topic><topic>Copper plate heat spreader</topic><topic>Direct conversion</topic><topic>Electronic device</topic><topic>Ethylene</topic><topic>Ethylene glycol</topic><topic>Fins</topic><topic>Flow rates</topic><topic>Heat</topic><topic>Heat flux</topic><topic>Heat sinks</topic><topic>Heat transfer</topic><topic>Heat transmission</topic><topic>Hybrid systems</topic><topic>Liquid nitrogen</topic><topic>Mass flow rate</topic><topic>Metal plates</topic><topic>Nitrogen</topic><topic>Optimization</topic><topic>Overheating</topic><topic>Parametric analysis</topic><topic>Performance evaluation</topic><topic>Photovoltaic cells</topic><topic>Photovoltaics</topic><topic>Temperature</topic><topic>Thermal energy</topic><topic>Ultra-high power density</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zeneli, M.</creatorcontrib><creatorcontrib>Bellucci, A.</creatorcontrib><creatorcontrib>Sabbatella, G.</creatorcontrib><creatorcontrib>Trucchi, D.M.</creatorcontrib><creatorcontrib>Nikolopoulos, A.</creatorcontrib><creatorcontrib>Nikolopoulos, N.</creatorcontrib><creatorcontrib>Karellas, S.</creatorcontrib><creatorcontrib>Kakaras, E.</creatorcontrib><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Energy conversion and management</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zeneli, M.</au><au>Bellucci, A.</au><au>Sabbatella, G.</au><au>Trucchi, D.M.</au><au>Nikolopoulos, A.</au><au>Nikolopoulos, N.</au><au>Karellas, S.</au><au>Kakaras, E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Performance evaluation and optimization of the cooling system of a hybrid thermionic-photovoltaic converter</atitle><jtitle>Energy conversion and management</jtitle><date>2020-04-15</date><risdate>2020</risdate><volume>210</volume><spage>112717</spage><pages>112717-</pages><artnum>112717</artnum><issn>0196-8904</issn><eissn>1879-2227</eissn><abstract>[Display omitted] •Experimental investigation and CFD simulation of a copper plate heat spreader.•The heat spreader cools down a novel solid-state heat-to-power converter.•A mixture of water/ethylene or cryogenic liquid nitrogen (LN) is used as coolant.•A parametric analysis is conducted of various operating conditions of the system.•The cooling system can dissipate heat fluxes up to 600 W·cm−2 with LN as coolant. Hybrid thermionic-photovoltaic (TIPV) converters are efficient and clean solutions for the direct conversion of thermal energy to electricity, taking advantage of both the photovoltaic and thermionic phenomena. An important hurdle for their efficient operation is the overheating of the PV cell integrated within the TIPV anode, due to partial conversion of the emitted electron and photon fluxes to thermal heat. This obstacle needs to be overcome with an efficient, yet practical, cooler. In this work, a copper plate heat spreader is experimentally tested for TIPV cathode temperatures up to 1450 °C, whilst its performance is also assessed using a validated CFD model for temperatures up to ~2000 °C. A multi-parametric analysis is conducted testing two coolants: i) a water/ethylene glycol mixture at various temperatures (−5–40 °C) and mass flow rates (0.05–0.4 kg·s−1), and, ii) cryogenic liquid nitrogen at a temperature of −196 °C and mass flow rate of 0.074 kg·s−1. Numerical results reveal that with water/ethylene mixture the PV can withstand heat fluxes up to 360 W·cm−2, without its temperature exceeding 100 °C. For higher thermal fluxes (360–600 W·cm−2), cryogenic liquid nitrogen is found to prevent the PV overheating and, therefore, is an attractive coolant; however, it poses safety concerns due to its possible boiling. Finally, two additional cooling system designs are proposed, a heat sink with straight fins and another with copper pipes, which offer higher heat transfer areas, but are more difficult to manufacture, than the copper plate heat spreader.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.enconman.2020.112717</doi><orcidid>https://orcid.org/0000-0002-7875-7025</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0196-8904
ispartof Energy conversion and management, 2020-04, Vol.210, p.112717, Article 112717
issn 0196-8904
1879-2227
language eng
recordid cdi_proquest_journals_2438221573
source Elsevier ScienceDirect Journals
subjects Clean energy
Computational fluid dynamics (CFD)
Converters
Coolants
Cooling
Cooling system design optimization
Cooling systems
Copper
Copper plate heat spreader
Direct conversion
Electronic device
Ethylene
Ethylene glycol
Fins
Flow rates
Heat
Heat flux
Heat sinks
Heat transfer
Heat transmission
Hybrid systems
Liquid nitrogen
Mass flow rate
Metal plates
Nitrogen
Optimization
Overheating
Parametric analysis
Performance evaluation
Photovoltaic cells
Photovoltaics
Temperature
Thermal energy
Ultra-high power density
title Performance evaluation and optimization of the cooling system of a hybrid thermionic-photovoltaic converter
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T17%3A45%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Performance%20evaluation%20and%20optimization%20of%20the%20cooling%20system%20of%20a%20hybrid%20thermionic-photovoltaic%20converter&rft.jtitle=Energy%20conversion%20and%20management&rft.au=Zeneli,%20M.&rft.date=2020-04-15&rft.volume=210&rft.spage=112717&rft.pages=112717-&rft.artnum=112717&rft.issn=0196-8904&rft.eissn=1879-2227&rft_id=info:doi/10.1016/j.enconman.2020.112717&rft_dat=%3Cproquest_cross%3E2438221573%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2438221573&rft_id=info:pmid/&rft_els_id=S0196890420302557&rfr_iscdi=true