Adaptive mesh refinement for topology optimization with discrete geometric components

This work introduces an Adaptive Mesh Refinement (AMR) strategy for the topology optimization of structures made of discrete geometric components using the geometry projection method. Practical structures made of geometric shapes such as bars and plates typically exhibit low volume fractions with re...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computer methods in applied mechanics and engineering 2020-06, Vol.364, p.112930, Article 112930
Hauptverfasser: Zhang, Shanglong, Gain, Arun L., Norato, Julián A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 112930
container_title Computer methods in applied mechanics and engineering
container_volume 364
creator Zhang, Shanglong
Gain, Arun L.
Norato, Julián A.
description This work introduces an Adaptive Mesh Refinement (AMR) strategy for the topology optimization of structures made of discrete geometric components using the geometry projection method. Practical structures made of geometric shapes such as bars and plates typically exhibit low volume fractions with respect to the volume of the design region they occupy. To maintain an accurate analysis and to ensure well-defined sensitivities in the geometry projection, it is required that the element size is smaller than the smallest dimension of each component. For low-volume-fraction structures, this leads to finite element meshes with very large numbers of elements. To improve the efficiency of the analysis and optimization, we propose a strategy to adaptively refine the mesh and reduce the number of elements by having a finer mesh on the geometric components, and a coarser mesh away from them. The refinement indicator stems very naturally from the geometry projection and is thus straightforward to implement. We demonstrate the effectiveness of the proposed AMR method by performing topology optimization for the design of minimum-compliance and stress-constrained structures made of bars and plates. •We perform topology optimization of structures with geometric primitives.•These structures often occupy a low fraction of design region volume.•We propose an adaptive mesh refinement scheme to decrease the mesh size.•The refinement indicator is based on the projected.•We demonstrate our method by designing a low volume fraction 3-d component.
doi_str_mv 10.1016/j.cma.2020.112930
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2438220238</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0045782520301134</els_id><sourcerecordid>2438220238</sourcerecordid><originalsourceid>FETCH-LOGICAL-c368t-9f18584d554978b3cddd27bd07933205cb4920050b146f7be636b8896410c9ad3</originalsourceid><addsrcrecordid>eNp9kMtKAzEUhoMoWKsP4C7gemouc0lwVYo3KLix6zCTnGkzdCZjklbq05syrs3mEPi_c_kQuqdkQQktH7uF7usFIyz9KZOcXKAZFZXMGOXiEs0IyYusEqy4RjchdCQ9QdkMbZamHqM9Au4h7LCH1g7QwxBx6zyObnR7tz1hlzK9_amjdQP-tnGHjQ3aQwS8BddD9FZj7frRDYkNt-iqrfcB7v7qHG1enj9Xb9n64_V9tVxnmpciZrKlohC5KYpcVqLh2hjDqsaQSnLOSKGbXDJCCtLQvGyrBkpeNkLIMqdEy9rwOXqY-o7efR0gRNW5gx_SSMVyLljywUVK0SmlvQshnahGb_vanxQl6mxPdSrZU2d7arKXmKeJgbT-0YJXQVsYNBjrQUdlnP2H_gWU_Heh</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2438220238</pqid></control><display><type>article</type><title>Adaptive mesh refinement for topology optimization with discrete geometric components</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Zhang, Shanglong ; Gain, Arun L. ; Norato, Julián A.</creator><creatorcontrib>Zhang, Shanglong ; Gain, Arun L. ; Norato, Julián A.</creatorcontrib><description>This work introduces an Adaptive Mesh Refinement (AMR) strategy for the topology optimization of structures made of discrete geometric components using the geometry projection method. Practical structures made of geometric shapes such as bars and plates typically exhibit low volume fractions with respect to the volume of the design region they occupy. To maintain an accurate analysis and to ensure well-defined sensitivities in the geometry projection, it is required that the element size is smaller than the smallest dimension of each component. For low-volume-fraction structures, this leads to finite element meshes with very large numbers of elements. To improve the efficiency of the analysis and optimization, we propose a strategy to adaptively refine the mesh and reduce the number of elements by having a finer mesh on the geometric components, and a coarser mesh away from them. The refinement indicator stems very naturally from the geometry projection and is thus straightforward to implement. We demonstrate the effectiveness of the proposed AMR method by performing topology optimization for the design of minimum-compliance and stress-constrained structures made of bars and plates. •We perform topology optimization of structures with geometric primitives.•These structures often occupy a low fraction of design region volume.•We propose an adaptive mesh refinement scheme to decrease the mesh size.•The refinement indicator is based on the projected.•We demonstrate our method by designing a low volume fraction 3-d component.</description><identifier>ISSN: 0045-7825</identifier><identifier>EISSN: 1879-2138</identifier><identifier>DOI: 10.1016/j.cma.2020.112930</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Adaptive mesh refinement ; Design optimization ; Forecasting ; Geometry ; Geometry projection ; Grid refinement (mathematics) ; Optimization ; Plates ; Topology optimization</subject><ispartof>Computer methods in applied mechanics and engineering, 2020-06, Vol.364, p.112930, Article 112930</ispartof><rights>2020 Elsevier B.V.</rights><rights>Copyright Elsevier BV Jun 1, 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c368t-9f18584d554978b3cddd27bd07933205cb4920050b146f7be636b8896410c9ad3</citedby><cites>FETCH-LOGICAL-c368t-9f18584d554978b3cddd27bd07933205cb4920050b146f7be636b8896410c9ad3</cites><orcidid>0000-0003-3342-3889</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0045782520301134$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Zhang, Shanglong</creatorcontrib><creatorcontrib>Gain, Arun L.</creatorcontrib><creatorcontrib>Norato, Julián A.</creatorcontrib><title>Adaptive mesh refinement for topology optimization with discrete geometric components</title><title>Computer methods in applied mechanics and engineering</title><description>This work introduces an Adaptive Mesh Refinement (AMR) strategy for the topology optimization of structures made of discrete geometric components using the geometry projection method. Practical structures made of geometric shapes such as bars and plates typically exhibit low volume fractions with respect to the volume of the design region they occupy. To maintain an accurate analysis and to ensure well-defined sensitivities in the geometry projection, it is required that the element size is smaller than the smallest dimension of each component. For low-volume-fraction structures, this leads to finite element meshes with very large numbers of elements. To improve the efficiency of the analysis and optimization, we propose a strategy to adaptively refine the mesh and reduce the number of elements by having a finer mesh on the geometric components, and a coarser mesh away from them. The refinement indicator stems very naturally from the geometry projection and is thus straightforward to implement. We demonstrate the effectiveness of the proposed AMR method by performing topology optimization for the design of minimum-compliance and stress-constrained structures made of bars and plates. •We perform topology optimization of structures with geometric primitives.•These structures often occupy a low fraction of design region volume.•We propose an adaptive mesh refinement scheme to decrease the mesh size.•The refinement indicator is based on the projected.•We demonstrate our method by designing a low volume fraction 3-d component.</description><subject>Adaptive mesh refinement</subject><subject>Design optimization</subject><subject>Forecasting</subject><subject>Geometry</subject><subject>Geometry projection</subject><subject>Grid refinement (mathematics)</subject><subject>Optimization</subject><subject>Plates</subject><subject>Topology optimization</subject><issn>0045-7825</issn><issn>1879-2138</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kMtKAzEUhoMoWKsP4C7gemouc0lwVYo3KLix6zCTnGkzdCZjklbq05syrs3mEPi_c_kQuqdkQQktH7uF7usFIyz9KZOcXKAZFZXMGOXiEs0IyYusEqy4RjchdCQ9QdkMbZamHqM9Au4h7LCH1g7QwxBx6zyObnR7tz1hlzK9_amjdQP-tnGHjQ3aQwS8BddD9FZj7frRDYkNt-iqrfcB7v7qHG1enj9Xb9n64_V9tVxnmpciZrKlohC5KYpcVqLh2hjDqsaQSnLOSKGbXDJCCtLQvGyrBkpeNkLIMqdEy9rwOXqY-o7efR0gRNW5gx_SSMVyLljywUVK0SmlvQshnahGb_vanxQl6mxPdSrZU2d7arKXmKeJgbT-0YJXQVsYNBjrQUdlnP2H_gWU_Heh</recordid><startdate>20200601</startdate><enddate>20200601</enddate><creator>Zhang, Shanglong</creator><creator>Gain, Arun L.</creator><creator>Norato, Julián A.</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-3342-3889</orcidid></search><sort><creationdate>20200601</creationdate><title>Adaptive mesh refinement for topology optimization with discrete geometric components</title><author>Zhang, Shanglong ; Gain, Arun L. ; Norato, Julián A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c368t-9f18584d554978b3cddd27bd07933205cb4920050b146f7be636b8896410c9ad3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Adaptive mesh refinement</topic><topic>Design optimization</topic><topic>Forecasting</topic><topic>Geometry</topic><topic>Geometry projection</topic><topic>Grid refinement (mathematics)</topic><topic>Optimization</topic><topic>Plates</topic><topic>Topology optimization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Shanglong</creatorcontrib><creatorcontrib>Gain, Arun L.</creatorcontrib><creatorcontrib>Norato, Julián A.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computer methods in applied mechanics and engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Shanglong</au><au>Gain, Arun L.</au><au>Norato, Julián A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Adaptive mesh refinement for topology optimization with discrete geometric components</atitle><jtitle>Computer methods in applied mechanics and engineering</jtitle><date>2020-06-01</date><risdate>2020</risdate><volume>364</volume><spage>112930</spage><pages>112930-</pages><artnum>112930</artnum><issn>0045-7825</issn><eissn>1879-2138</eissn><abstract>This work introduces an Adaptive Mesh Refinement (AMR) strategy for the topology optimization of structures made of discrete geometric components using the geometry projection method. Practical structures made of geometric shapes such as bars and plates typically exhibit low volume fractions with respect to the volume of the design region they occupy. To maintain an accurate analysis and to ensure well-defined sensitivities in the geometry projection, it is required that the element size is smaller than the smallest dimension of each component. For low-volume-fraction structures, this leads to finite element meshes with very large numbers of elements. To improve the efficiency of the analysis and optimization, we propose a strategy to adaptively refine the mesh and reduce the number of elements by having a finer mesh on the geometric components, and a coarser mesh away from them. The refinement indicator stems very naturally from the geometry projection and is thus straightforward to implement. We demonstrate the effectiveness of the proposed AMR method by performing topology optimization for the design of minimum-compliance and stress-constrained structures made of bars and plates. •We perform topology optimization of structures with geometric primitives.•These structures often occupy a low fraction of design region volume.•We propose an adaptive mesh refinement scheme to decrease the mesh size.•The refinement indicator is based on the projected.•We demonstrate our method by designing a low volume fraction 3-d component.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.cma.2020.112930</doi><orcidid>https://orcid.org/0000-0003-3342-3889</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0045-7825
ispartof Computer methods in applied mechanics and engineering, 2020-06, Vol.364, p.112930, Article 112930
issn 0045-7825
1879-2138
language eng
recordid cdi_proquest_journals_2438220238
source ScienceDirect Journals (5 years ago - present)
subjects Adaptive mesh refinement
Design optimization
Forecasting
Geometry
Geometry projection
Grid refinement (mathematics)
Optimization
Plates
Topology optimization
title Adaptive mesh refinement for topology optimization with discrete geometric components
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T18%3A52%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Adaptive%20mesh%20refinement%20for%20topology%20optimization%20with%20discrete%20geometric%20components&rft.jtitle=Computer%20methods%20in%20applied%20mechanics%20and%20engineering&rft.au=Zhang,%20Shanglong&rft.date=2020-06-01&rft.volume=364&rft.spage=112930&rft.pages=112930-&rft.artnum=112930&rft.issn=0045-7825&rft.eissn=1879-2138&rft_id=info:doi/10.1016/j.cma.2020.112930&rft_dat=%3Cproquest_cross%3E2438220238%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2438220238&rft_id=info:pmid/&rft_els_id=S0045782520301134&rfr_iscdi=true