Experimental study and analysis of a thermoacoustically driven thermoacoustic refrigerator

Experimental investigations are performed on a half-wavelength standing wave type thermoacoustically driven thermoacoustic refrigerator also known as TADTAR. Present TADTAR device conceived to be a quarter wavelength standing wave type thermoacoustic engine (TAE) coupled to a quarter wavelength stan...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sadhana (Bangalore) 2020-12, Vol.45 (1), Article 213
Hauptverfasser: DESAI, A B, DESAI, K P, NAIK, H B, ATREY, M D
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page
container_title Sadhana (Bangalore)
container_volume 45
creator DESAI, A B
DESAI, K P
NAIK, H B
ATREY, M D
description Experimental investigations are performed on a half-wavelength standing wave type thermoacoustically driven thermoacoustic refrigerator also known as TADTAR. Present TADTAR device conceived to be a quarter wavelength standing wave type thermoacoustic engine (TAE) coupled to a quarter wavelength standing wave thermoacoustic refrigerator (TAR). A TAE generates acoustic work using heat, and this produced acoustic work is directly fed to TAR where a useful cooling effect is developed. The study here aims to project the enhancement in the performance of a TADTAR system by using better geometric choices and operating conditions. In the present work, by keeping the engine part unaltered, parametric variations on the refrigerator side are performed. Two geometric parameters namely resonator length and TAR stack position and one operating parameter, working gas, have been varied at three distinct choices. The performance of TADTAR is examined for three output parameters of TADTAR namely frequency of oscillations, pressure amplitude, and temperature difference across TAR stack. The present study should be useful for assisting select these parameters for starting the designing of a TADTAR. It also helps in concluding in a more generalized way the dependence of the above-said output of TADTAR on the varying parameters. This paper shows that longer resonator and He-Ar mixture as working gas among the choices is better for a TADTAR system for achieving better performance. It also highlights the potential existence of a unique position for a stack length for a TADTAR to attain maximum performance in terms of the temperature difference across the TAR stack. The present paper reports the maximum temperature difference of 16.3 K across the TAR stack.
doi_str_mv 10.1007/s12046-020-01452-9
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2438213578</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2438213578</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-9a924fd6fd295457ceae44954147f5f9d114bd94bce524764acb18cbbd436a1c3</originalsourceid><addsrcrecordid>eNp9UE1LxDAUDKLguvoHPAU8R_PZNEdZ1g9Y8KIXLyHNh3bptmuSiv33RisIHjw83oM3M8wMAOcEXxKM5VUiFPMKYYoRJlxQpA7AAivJkKykPCw3FRWiXKljcJLSFmMqcc0W4Hn9sfex3fk-mw6mPLoJmt6VMd2U2gSHAA3Mrz7uBmOHMeXWmq6boIvtu-__fGD0IbYvPpo8xFNwFEyX_NnPXoKnm_Xj6g5tHm7vV9cbZBlRGSmjKA-uCo4qwYW03njOy0m4DCIoRwhvnOKN9YJyWXFjG1LbpnGcVYZYtgQXs-4-Dm-jT1lvhzEW_0lTzmpKmJB1QdEZZeOQUvGp9yW2iZMmWH91qOcOdelQf3eoVSGxmZQKuC-5fqX_YX0CY_F2jQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2438213578</pqid></control><display><type>article</type><title>Experimental study and analysis of a thermoacoustically driven thermoacoustic refrigerator</title><source>Indian Academy of Sciences</source><source>Springer Nature - Complete Springer Journals</source><source>EZB Electronic Journals Library</source><creator>DESAI, A B ; DESAI, K P ; NAIK, H B ; ATREY, M D</creator><creatorcontrib>DESAI, A B ; DESAI, K P ; NAIK, H B ; ATREY, M D</creatorcontrib><description>Experimental investigations are performed on a half-wavelength standing wave type thermoacoustically driven thermoacoustic refrigerator also known as TADTAR. Present TADTAR device conceived to be a quarter wavelength standing wave type thermoacoustic engine (TAE) coupled to a quarter wavelength standing wave thermoacoustic refrigerator (TAR). A TAE generates acoustic work using heat, and this produced acoustic work is directly fed to TAR where a useful cooling effect is developed. The study here aims to project the enhancement in the performance of a TADTAR system by using better geometric choices and operating conditions. In the present work, by keeping the engine part unaltered, parametric variations on the refrigerator side are performed. Two geometric parameters namely resonator length and TAR stack position and one operating parameter, working gas, have been varied at three distinct choices. The performance of TADTAR is examined for three output parameters of TADTAR namely frequency of oscillations, pressure amplitude, and temperature difference across TAR stack. The present study should be useful for assisting select these parameters for starting the designing of a TADTAR. It also helps in concluding in a more generalized way the dependence of the above-said output of TADTAR on the varying parameters. This paper shows that longer resonator and He-Ar mixture as working gas among the choices is better for a TADTAR system for achieving better performance. It also highlights the potential existence of a unique position for a stack length for a TADTAR to attain maximum performance in terms of the temperature difference across the TAR stack. The present paper reports the maximum temperature difference of 16.3 K across the TAR stack.</description><identifier>ISSN: 0256-2499</identifier><identifier>EISSN: 0973-7677</identifier><identifier>DOI: 10.1007/s12046-020-01452-9</identifier><language>eng</language><publisher>New Delhi: Springer India</publisher><subject>Cooling effects ; Engine components ; Engineering ; Parameters ; Resonators ; Standing waves ; Temperature gradients ; Thermoacoustics</subject><ispartof>Sadhana (Bangalore), 2020-12, Vol.45 (1), Article 213</ispartof><rights>Indian Academy of Sciences 2020</rights><rights>Indian Academy of Sciences 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-9a924fd6fd295457ceae44954147f5f9d114bd94bce524764acb18cbbd436a1c3</citedby><cites>FETCH-LOGICAL-c319t-9a924fd6fd295457ceae44954147f5f9d114bd94bce524764acb18cbbd436a1c3</cites><orcidid>0000-0002-8106-4342</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12046-020-01452-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12046-020-01452-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>DESAI, A B</creatorcontrib><creatorcontrib>DESAI, K P</creatorcontrib><creatorcontrib>NAIK, H B</creatorcontrib><creatorcontrib>ATREY, M D</creatorcontrib><title>Experimental study and analysis of a thermoacoustically driven thermoacoustic refrigerator</title><title>Sadhana (Bangalore)</title><addtitle>Sādhanā</addtitle><description>Experimental investigations are performed on a half-wavelength standing wave type thermoacoustically driven thermoacoustic refrigerator also known as TADTAR. Present TADTAR device conceived to be a quarter wavelength standing wave type thermoacoustic engine (TAE) coupled to a quarter wavelength standing wave thermoacoustic refrigerator (TAR). A TAE generates acoustic work using heat, and this produced acoustic work is directly fed to TAR where a useful cooling effect is developed. The study here aims to project the enhancement in the performance of a TADTAR system by using better geometric choices and operating conditions. In the present work, by keeping the engine part unaltered, parametric variations on the refrigerator side are performed. Two geometric parameters namely resonator length and TAR stack position and one operating parameter, working gas, have been varied at three distinct choices. The performance of TADTAR is examined for three output parameters of TADTAR namely frequency of oscillations, pressure amplitude, and temperature difference across TAR stack. The present study should be useful for assisting select these parameters for starting the designing of a TADTAR. It also helps in concluding in a more generalized way the dependence of the above-said output of TADTAR on the varying parameters. This paper shows that longer resonator and He-Ar mixture as working gas among the choices is better for a TADTAR system for achieving better performance. It also highlights the potential existence of a unique position for a stack length for a TADTAR to attain maximum performance in terms of the temperature difference across the TAR stack. The present paper reports the maximum temperature difference of 16.3 K across the TAR stack.</description><subject>Cooling effects</subject><subject>Engine components</subject><subject>Engineering</subject><subject>Parameters</subject><subject>Resonators</subject><subject>Standing waves</subject><subject>Temperature gradients</subject><subject>Thermoacoustics</subject><issn>0256-2499</issn><issn>0973-7677</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9UE1LxDAUDKLguvoHPAU8R_PZNEdZ1g9Y8KIXLyHNh3bptmuSiv33RisIHjw83oM3M8wMAOcEXxKM5VUiFPMKYYoRJlxQpA7AAivJkKykPCw3FRWiXKljcJLSFmMqcc0W4Hn9sfex3fk-mw6mPLoJmt6VMd2U2gSHAA3Mrz7uBmOHMeXWmq6boIvtu-__fGD0IbYvPpo8xFNwFEyX_NnPXoKnm_Xj6g5tHm7vV9cbZBlRGSmjKA-uCo4qwYW03njOy0m4DCIoRwhvnOKN9YJyWXFjG1LbpnGcVYZYtgQXs-4-Dm-jT1lvhzEW_0lTzmpKmJB1QdEZZeOQUvGp9yW2iZMmWH91qOcOdelQf3eoVSGxmZQKuC-5fqX_YX0CY_F2jQ</recordid><startdate>20201201</startdate><enddate>20201201</enddate><creator>DESAI, A B</creator><creator>DESAI, K P</creator><creator>NAIK, H B</creator><creator>ATREY, M D</creator><general>Springer India</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-8106-4342</orcidid></search><sort><creationdate>20201201</creationdate><title>Experimental study and analysis of a thermoacoustically driven thermoacoustic refrigerator</title><author>DESAI, A B ; DESAI, K P ; NAIK, H B ; ATREY, M D</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-9a924fd6fd295457ceae44954147f5f9d114bd94bce524764acb18cbbd436a1c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Cooling effects</topic><topic>Engine components</topic><topic>Engineering</topic><topic>Parameters</topic><topic>Resonators</topic><topic>Standing waves</topic><topic>Temperature gradients</topic><topic>Thermoacoustics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>DESAI, A B</creatorcontrib><creatorcontrib>DESAI, K P</creatorcontrib><creatorcontrib>NAIK, H B</creatorcontrib><creatorcontrib>ATREY, M D</creatorcontrib><collection>CrossRef</collection><jtitle>Sadhana (Bangalore)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>DESAI, A B</au><au>DESAI, K P</au><au>NAIK, H B</au><au>ATREY, M D</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Experimental study and analysis of a thermoacoustically driven thermoacoustic refrigerator</atitle><jtitle>Sadhana (Bangalore)</jtitle><stitle>Sādhanā</stitle><date>2020-12-01</date><risdate>2020</risdate><volume>45</volume><issue>1</issue><artnum>213</artnum><issn>0256-2499</issn><eissn>0973-7677</eissn><abstract>Experimental investigations are performed on a half-wavelength standing wave type thermoacoustically driven thermoacoustic refrigerator also known as TADTAR. Present TADTAR device conceived to be a quarter wavelength standing wave type thermoacoustic engine (TAE) coupled to a quarter wavelength standing wave thermoacoustic refrigerator (TAR). A TAE generates acoustic work using heat, and this produced acoustic work is directly fed to TAR where a useful cooling effect is developed. The study here aims to project the enhancement in the performance of a TADTAR system by using better geometric choices and operating conditions. In the present work, by keeping the engine part unaltered, parametric variations on the refrigerator side are performed. Two geometric parameters namely resonator length and TAR stack position and one operating parameter, working gas, have been varied at three distinct choices. The performance of TADTAR is examined for three output parameters of TADTAR namely frequency of oscillations, pressure amplitude, and temperature difference across TAR stack. The present study should be useful for assisting select these parameters for starting the designing of a TADTAR. It also helps in concluding in a more generalized way the dependence of the above-said output of TADTAR on the varying parameters. This paper shows that longer resonator and He-Ar mixture as working gas among the choices is better for a TADTAR system for achieving better performance. It also highlights the potential existence of a unique position for a stack length for a TADTAR to attain maximum performance in terms of the temperature difference across the TAR stack. The present paper reports the maximum temperature difference of 16.3 K across the TAR stack.</abstract><cop>New Delhi</cop><pub>Springer India</pub><doi>10.1007/s12046-020-01452-9</doi><orcidid>https://orcid.org/0000-0002-8106-4342</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0256-2499
ispartof Sadhana (Bangalore), 2020-12, Vol.45 (1), Article 213
issn 0256-2499
0973-7677
language eng
recordid cdi_proquest_journals_2438213578
source Indian Academy of Sciences; Springer Nature - Complete Springer Journals; EZB Electronic Journals Library
subjects Cooling effects
Engine components
Engineering
Parameters
Resonators
Standing waves
Temperature gradients
Thermoacoustics
title Experimental study and analysis of a thermoacoustically driven thermoacoustic refrigerator
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T19%3A27%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Experimental%20study%20and%20analysis%20of%20a%20thermoacoustically%20driven%20thermoacoustic%20refrigerator&rft.jtitle=Sadhana%20(Bangalore)&rft.au=DESAI,%20A%20B&rft.date=2020-12-01&rft.volume=45&rft.issue=1&rft.artnum=213&rft.issn=0256-2499&rft.eissn=0973-7677&rft_id=info:doi/10.1007/s12046-020-01452-9&rft_dat=%3Cproquest_cross%3E2438213578%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2438213578&rft_id=info:pmid/&rfr_iscdi=true