New higher-order weak lower inner epiderivatives and application to Karush–Kuhn–Tucker necessary optimality conditions in set-valued optimization
The purpose of the paper is to establish higher-order Karush–Kuhn–Tucker higher-order necessary optimality conditions for set-valued optimization where the derivatives of objective and constraint functions are separated. We first introduce concepts of higher-order weak lower inner epiderivatives for...
Gespeichert in:
Veröffentlicht in: | Japan journal of industrial and applied mathematics 2020, Vol.37 (3), p.851-866 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 866 |
---|---|
container_issue | 3 |
container_start_page | 851 |
container_title | Japan journal of industrial and applied mathematics |
container_volume | 37 |
creator | Peng, Zhenhua Wan, Zhongping Guo, Yujia |
description | The purpose of the paper is to establish higher-order Karush–Kuhn–Tucker higher-order necessary optimality conditions for set-valued optimization where the derivatives of objective and constraint functions are separated. We first introduce concepts of higher-order weak lower inner epiderivatives for set-valued maps and discuss some useful properties about new epiderivatives, for instance, convexity, subadditivity and chain rule. With the help of the new concept and its properties, we establish higher-order Karush–Kuhn–Tucker necessary optimality conditions which is the classical type Karush–Kuhn–Tucker optimality conditions and improve and enhance some recent existing results in the literatures. Several examples are provided to illustrate our results. Finally, we provide weak and strong duality theorems in set-valued optimization. |
doi_str_mv | 10.1007/s13160-020-00426-y |
format | Article |
fullrecord | <record><control><sourceid>proquest_sprin</sourceid><recordid>TN_cdi_proquest_journals_2438213466</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2438213466</sourcerecordid><originalsourceid>FETCH-LOGICAL-p157t-82e8e266e71825392527b4c8b2e71203bcefb1815da4cd4a9b350b8a79ef95e73</originalsourceid><addsrcrecordid>eNpFkMtKw0AUhgdRsFZfwNWA69G5JJPJUoo3WnSj4C5MktNm2jiJM0lLXPkO4gv6JE5bwcW58POd_8CP0Dmjl4zS5MozwSQllIeiEZdkOEAjpqQiqUheD9GIpkyShNL4GJ14vwyQVIyN0PcjbHBlFhU40rgSHN6AXuG62YTVWBs6tCboZq07swaPtS2xbtvaFEFoLO4aPNWu99XP59e0r2wYz32xCocWCvBeuwE3bWfedG26AReNLc320Ad77KEja133UO4Z87EzPUVHc117OPubY_Rye_M8uSezp7uHyfWMtCxOOqI4KOBSQsIUj0XKY57kUaFyHhRORV7APGeKxaWOijLSaS5imiudpDBPY0jEGF3sfVvXvPfgu2zZ9M6GlxmPhOJMRFIGSuwp3zpjF-D-KUazbf7ZPv8s5J_t8s8G8QvHVH8t</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2438213466</pqid></control><display><type>article</type><title>New higher-order weak lower inner epiderivatives and application to Karush–Kuhn–Tucker necessary optimality conditions in set-valued optimization</title><source>SpringerLink Journals</source><creator>Peng, Zhenhua ; Wan, Zhongping ; Guo, Yujia</creator><creatorcontrib>Peng, Zhenhua ; Wan, Zhongping ; Guo, Yujia</creatorcontrib><description>The purpose of the paper is to establish higher-order Karush–Kuhn–Tucker higher-order necessary optimality conditions for set-valued optimization where the derivatives of objective and constraint functions are separated. We first introduce concepts of higher-order weak lower inner epiderivatives for set-valued maps and discuss some useful properties about new epiderivatives, for instance, convexity, subadditivity and chain rule. With the help of the new concept and its properties, we establish higher-order Karush–Kuhn–Tucker necessary optimality conditions which is the classical type Karush–Kuhn–Tucker optimality conditions and improve and enhance some recent existing results in the literatures. Several examples are provided to illustrate our results. Finally, we provide weak and strong duality theorems in set-valued optimization.</description><identifier>ISSN: 0916-7005</identifier><identifier>EISSN: 1868-937X</identifier><identifier>DOI: 10.1007/s13160-020-00426-y</identifier><language>eng</language><publisher>Tokyo: Springer Japan</publisher><subject>Applications of Mathematics ; Computational Mathematics and Numerical Analysis ; Convexity ; Mathematics ; Mathematics and Statistics ; Optimization ; Original Paper</subject><ispartof>Japan journal of industrial and applied mathematics, 2020, Vol.37 (3), p.851-866</ispartof><rights>The JJIAM Publishing Committee and Springer Japan KK, part of Springer Nature 2020</rights><rights>The JJIAM Publishing Committee and Springer Japan KK, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-0139-2988</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s13160-020-00426-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s13160-020-00426-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Peng, Zhenhua</creatorcontrib><creatorcontrib>Wan, Zhongping</creatorcontrib><creatorcontrib>Guo, Yujia</creatorcontrib><title>New higher-order weak lower inner epiderivatives and application to Karush–Kuhn–Tucker necessary optimality conditions in set-valued optimization</title><title>Japan journal of industrial and applied mathematics</title><addtitle>Japan J. Indust. Appl. Math</addtitle><description>The purpose of the paper is to establish higher-order Karush–Kuhn–Tucker higher-order necessary optimality conditions for set-valued optimization where the derivatives of objective and constraint functions are separated. We first introduce concepts of higher-order weak lower inner epiderivatives for set-valued maps and discuss some useful properties about new epiderivatives, for instance, convexity, subadditivity and chain rule. With the help of the new concept and its properties, we establish higher-order Karush–Kuhn–Tucker necessary optimality conditions which is the classical type Karush–Kuhn–Tucker optimality conditions and improve and enhance some recent existing results in the literatures. Several examples are provided to illustrate our results. Finally, we provide weak and strong duality theorems in set-valued optimization.</description><subject>Applications of Mathematics</subject><subject>Computational Mathematics and Numerical Analysis</subject><subject>Convexity</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Optimization</subject><subject>Original Paper</subject><issn>0916-7005</issn><issn>1868-937X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNpFkMtKw0AUhgdRsFZfwNWA69G5JJPJUoo3WnSj4C5MktNm2jiJM0lLXPkO4gv6JE5bwcW58POd_8CP0Dmjl4zS5MozwSQllIeiEZdkOEAjpqQiqUheD9GIpkyShNL4GJ14vwyQVIyN0PcjbHBlFhU40rgSHN6AXuG62YTVWBs6tCboZq07swaPtS2xbtvaFEFoLO4aPNWu99XP59e0r2wYz32xCocWCvBeuwE3bWfedG26AReNLc320Ad77KEja133UO4Z87EzPUVHc117OPubY_Rye_M8uSezp7uHyfWMtCxOOqI4KOBSQsIUj0XKY57kUaFyHhRORV7APGeKxaWOijLSaS5imiudpDBPY0jEGF3sfVvXvPfgu2zZ9M6GlxmPhOJMRFIGSuwp3zpjF-D-KUazbf7ZPv8s5J_t8s8G8QvHVH8t</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Peng, Zhenhua</creator><creator>Wan, Zhongping</creator><creator>Guo, Yujia</creator><general>Springer Japan</general><general>Springer Nature B.V</general><scope/><orcidid>https://orcid.org/0000-0002-0139-2988</orcidid></search><sort><creationdate>2020</creationdate><title>New higher-order weak lower inner epiderivatives and application to Karush–Kuhn–Tucker necessary optimality conditions in set-valued optimization</title><author>Peng, Zhenhua ; Wan, Zhongping ; Guo, Yujia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p157t-82e8e266e71825392527b4c8b2e71203bcefb1815da4cd4a9b350b8a79ef95e73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Applications of Mathematics</topic><topic>Computational Mathematics and Numerical Analysis</topic><topic>Convexity</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Optimization</topic><topic>Original Paper</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Peng, Zhenhua</creatorcontrib><creatorcontrib>Wan, Zhongping</creatorcontrib><creatorcontrib>Guo, Yujia</creatorcontrib><jtitle>Japan journal of industrial and applied mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Peng, Zhenhua</au><au>Wan, Zhongping</au><au>Guo, Yujia</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>New higher-order weak lower inner epiderivatives and application to Karush–Kuhn–Tucker necessary optimality conditions in set-valued optimization</atitle><jtitle>Japan journal of industrial and applied mathematics</jtitle><stitle>Japan J. Indust. Appl. Math</stitle><date>2020</date><risdate>2020</risdate><volume>37</volume><issue>3</issue><spage>851</spage><epage>866</epage><pages>851-866</pages><issn>0916-7005</issn><eissn>1868-937X</eissn><abstract>The purpose of the paper is to establish higher-order Karush–Kuhn–Tucker higher-order necessary optimality conditions for set-valued optimization where the derivatives of objective and constraint functions are separated. We first introduce concepts of higher-order weak lower inner epiderivatives for set-valued maps and discuss some useful properties about new epiderivatives, for instance, convexity, subadditivity and chain rule. With the help of the new concept and its properties, we establish higher-order Karush–Kuhn–Tucker necessary optimality conditions which is the classical type Karush–Kuhn–Tucker optimality conditions and improve and enhance some recent existing results in the literatures. Several examples are provided to illustrate our results. Finally, we provide weak and strong duality theorems in set-valued optimization.</abstract><cop>Tokyo</cop><pub>Springer Japan</pub><doi>10.1007/s13160-020-00426-y</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-0139-2988</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0916-7005 |
ispartof | Japan journal of industrial and applied mathematics, 2020, Vol.37 (3), p.851-866 |
issn | 0916-7005 1868-937X |
language | eng |
recordid | cdi_proquest_journals_2438213466 |
source | SpringerLink Journals |
subjects | Applications of Mathematics Computational Mathematics and Numerical Analysis Convexity Mathematics Mathematics and Statistics Optimization Original Paper |
title | New higher-order weak lower inner epiderivatives and application to Karush–Kuhn–Tucker necessary optimality conditions in set-valued optimization |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T06%3A20%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=New%20higher-order%20weak%20lower%20inner%20epiderivatives%20and%20application%20to%20Karush%E2%80%93Kuhn%E2%80%93Tucker%20necessary%20optimality%20conditions%20in%20set-valued%20optimization&rft.jtitle=Japan%20journal%20of%20industrial%20and%20applied%20mathematics&rft.au=Peng,%20Zhenhua&rft.date=2020&rft.volume=37&rft.issue=3&rft.spage=851&rft.epage=866&rft.pages=851-866&rft.issn=0916-7005&rft.eissn=1868-937X&rft_id=info:doi/10.1007/s13160-020-00426-y&rft_dat=%3Cproquest_sprin%3E2438213466%3C/proquest_sprin%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2438213466&rft_id=info:pmid/&rfr_iscdi=true |