New higher-order weak lower inner epiderivatives and application to Karush–Kuhn–Tucker necessary optimality conditions in set-valued optimization

The purpose of the paper is to establish higher-order Karush–Kuhn–Tucker higher-order necessary optimality conditions for set-valued optimization where the derivatives of objective and constraint functions are separated. We first introduce concepts of higher-order weak lower inner epiderivatives for...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Japan journal of industrial and applied mathematics 2020, Vol.37 (3), p.851-866
Hauptverfasser: Peng, Zhenhua, Wan, Zhongping, Guo, Yujia
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 866
container_issue 3
container_start_page 851
container_title Japan journal of industrial and applied mathematics
container_volume 37
creator Peng, Zhenhua
Wan, Zhongping
Guo, Yujia
description The purpose of the paper is to establish higher-order Karush–Kuhn–Tucker higher-order necessary optimality conditions for set-valued optimization where the derivatives of objective and constraint functions are separated. We first introduce concepts of higher-order weak lower inner epiderivatives for set-valued maps and discuss some useful properties about new epiderivatives, for instance, convexity, subadditivity and chain rule. With the help of the new concept and its properties, we establish higher-order Karush–Kuhn–Tucker necessary optimality conditions which is the classical type Karush–Kuhn–Tucker optimality conditions and improve and enhance some recent existing results in the literatures. Several examples are provided to illustrate our results. Finally, we provide weak and strong duality theorems in set-valued optimization.
doi_str_mv 10.1007/s13160-020-00426-y
format Article
fullrecord <record><control><sourceid>proquest_sprin</sourceid><recordid>TN_cdi_proquest_journals_2438213466</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2438213466</sourcerecordid><originalsourceid>FETCH-LOGICAL-p157t-82e8e266e71825392527b4c8b2e71203bcefb1815da4cd4a9b350b8a79ef95e73</originalsourceid><addsrcrecordid>eNpFkMtKw0AUhgdRsFZfwNWA69G5JJPJUoo3WnSj4C5MktNm2jiJM0lLXPkO4gv6JE5bwcW58POd_8CP0Dmjl4zS5MozwSQllIeiEZdkOEAjpqQiqUheD9GIpkyShNL4GJ14vwyQVIyN0PcjbHBlFhU40rgSHN6AXuG62YTVWBs6tCboZq07swaPtS2xbtvaFEFoLO4aPNWu99XP59e0r2wYz32xCocWCvBeuwE3bWfedG26AReNLc320Ad77KEja133UO4Z87EzPUVHc117OPubY_Rye_M8uSezp7uHyfWMtCxOOqI4KOBSQsIUj0XKY57kUaFyHhRORV7APGeKxaWOijLSaS5imiudpDBPY0jEGF3sfVvXvPfgu2zZ9M6GlxmPhOJMRFIGSuwp3zpjF-D-KUazbf7ZPv8s5J_t8s8G8QvHVH8t</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2438213466</pqid></control><display><type>article</type><title>New higher-order weak lower inner epiderivatives and application to Karush–Kuhn–Tucker necessary optimality conditions in set-valued optimization</title><source>SpringerLink Journals</source><creator>Peng, Zhenhua ; Wan, Zhongping ; Guo, Yujia</creator><creatorcontrib>Peng, Zhenhua ; Wan, Zhongping ; Guo, Yujia</creatorcontrib><description>The purpose of the paper is to establish higher-order Karush–Kuhn–Tucker higher-order necessary optimality conditions for set-valued optimization where the derivatives of objective and constraint functions are separated. We first introduce concepts of higher-order weak lower inner epiderivatives for set-valued maps and discuss some useful properties about new epiderivatives, for instance, convexity, subadditivity and chain rule. With the help of the new concept and its properties, we establish higher-order Karush–Kuhn–Tucker necessary optimality conditions which is the classical type Karush–Kuhn–Tucker optimality conditions and improve and enhance some recent existing results in the literatures. Several examples are provided to illustrate our results. Finally, we provide weak and strong duality theorems in set-valued optimization.</description><identifier>ISSN: 0916-7005</identifier><identifier>EISSN: 1868-937X</identifier><identifier>DOI: 10.1007/s13160-020-00426-y</identifier><language>eng</language><publisher>Tokyo: Springer Japan</publisher><subject>Applications of Mathematics ; Computational Mathematics and Numerical Analysis ; Convexity ; Mathematics ; Mathematics and Statistics ; Optimization ; Original Paper</subject><ispartof>Japan journal of industrial and applied mathematics, 2020, Vol.37 (3), p.851-866</ispartof><rights>The JJIAM Publishing Committee and Springer Japan KK, part of Springer Nature 2020</rights><rights>The JJIAM Publishing Committee and Springer Japan KK, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-0139-2988</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s13160-020-00426-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s13160-020-00426-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Peng, Zhenhua</creatorcontrib><creatorcontrib>Wan, Zhongping</creatorcontrib><creatorcontrib>Guo, Yujia</creatorcontrib><title>New higher-order weak lower inner epiderivatives and application to Karush–Kuhn–Tucker necessary optimality conditions in set-valued optimization</title><title>Japan journal of industrial and applied mathematics</title><addtitle>Japan J. Indust. Appl. Math</addtitle><description>The purpose of the paper is to establish higher-order Karush–Kuhn–Tucker higher-order necessary optimality conditions for set-valued optimization where the derivatives of objective and constraint functions are separated. We first introduce concepts of higher-order weak lower inner epiderivatives for set-valued maps and discuss some useful properties about new epiderivatives, for instance, convexity, subadditivity and chain rule. With the help of the new concept and its properties, we establish higher-order Karush–Kuhn–Tucker necessary optimality conditions which is the classical type Karush–Kuhn–Tucker optimality conditions and improve and enhance some recent existing results in the literatures. Several examples are provided to illustrate our results. Finally, we provide weak and strong duality theorems in set-valued optimization.</description><subject>Applications of Mathematics</subject><subject>Computational Mathematics and Numerical Analysis</subject><subject>Convexity</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Optimization</subject><subject>Original Paper</subject><issn>0916-7005</issn><issn>1868-937X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNpFkMtKw0AUhgdRsFZfwNWA69G5JJPJUoo3WnSj4C5MktNm2jiJM0lLXPkO4gv6JE5bwcW58POd_8CP0Dmjl4zS5MozwSQllIeiEZdkOEAjpqQiqUheD9GIpkyShNL4GJ14vwyQVIyN0PcjbHBlFhU40rgSHN6AXuG62YTVWBs6tCboZq07swaPtS2xbtvaFEFoLO4aPNWu99XP59e0r2wYz32xCocWCvBeuwE3bWfedG26AReNLc320Ad77KEja133UO4Z87EzPUVHc117OPubY_Rye_M8uSezp7uHyfWMtCxOOqI4KOBSQsIUj0XKY57kUaFyHhRORV7APGeKxaWOijLSaS5imiudpDBPY0jEGF3sfVvXvPfgu2zZ9M6GlxmPhOJMRFIGSuwp3zpjF-D-KUazbf7ZPv8s5J_t8s8G8QvHVH8t</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Peng, Zhenhua</creator><creator>Wan, Zhongping</creator><creator>Guo, Yujia</creator><general>Springer Japan</general><general>Springer Nature B.V</general><scope/><orcidid>https://orcid.org/0000-0002-0139-2988</orcidid></search><sort><creationdate>2020</creationdate><title>New higher-order weak lower inner epiderivatives and application to Karush–Kuhn–Tucker necessary optimality conditions in set-valued optimization</title><author>Peng, Zhenhua ; Wan, Zhongping ; Guo, Yujia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p157t-82e8e266e71825392527b4c8b2e71203bcefb1815da4cd4a9b350b8a79ef95e73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Applications of Mathematics</topic><topic>Computational Mathematics and Numerical Analysis</topic><topic>Convexity</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Optimization</topic><topic>Original Paper</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Peng, Zhenhua</creatorcontrib><creatorcontrib>Wan, Zhongping</creatorcontrib><creatorcontrib>Guo, Yujia</creatorcontrib><jtitle>Japan journal of industrial and applied mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Peng, Zhenhua</au><au>Wan, Zhongping</au><au>Guo, Yujia</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>New higher-order weak lower inner epiderivatives and application to Karush–Kuhn–Tucker necessary optimality conditions in set-valued optimization</atitle><jtitle>Japan journal of industrial and applied mathematics</jtitle><stitle>Japan J. Indust. Appl. Math</stitle><date>2020</date><risdate>2020</risdate><volume>37</volume><issue>3</issue><spage>851</spage><epage>866</epage><pages>851-866</pages><issn>0916-7005</issn><eissn>1868-937X</eissn><abstract>The purpose of the paper is to establish higher-order Karush–Kuhn–Tucker higher-order necessary optimality conditions for set-valued optimization where the derivatives of objective and constraint functions are separated. We first introduce concepts of higher-order weak lower inner epiderivatives for set-valued maps and discuss some useful properties about new epiderivatives, for instance, convexity, subadditivity and chain rule. With the help of the new concept and its properties, we establish higher-order Karush–Kuhn–Tucker necessary optimality conditions which is the classical type Karush–Kuhn–Tucker optimality conditions and improve and enhance some recent existing results in the literatures. Several examples are provided to illustrate our results. Finally, we provide weak and strong duality theorems in set-valued optimization.</abstract><cop>Tokyo</cop><pub>Springer Japan</pub><doi>10.1007/s13160-020-00426-y</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-0139-2988</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0916-7005
ispartof Japan journal of industrial and applied mathematics, 2020, Vol.37 (3), p.851-866
issn 0916-7005
1868-937X
language eng
recordid cdi_proquest_journals_2438213466
source SpringerLink Journals
subjects Applications of Mathematics
Computational Mathematics and Numerical Analysis
Convexity
Mathematics
Mathematics and Statistics
Optimization
Original Paper
title New higher-order weak lower inner epiderivatives and application to Karush–Kuhn–Tucker necessary optimality conditions in set-valued optimization
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T06%3A20%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=New%20higher-order%20weak%20lower%20inner%20epiderivatives%20and%20application%20to%20Karush%E2%80%93Kuhn%E2%80%93Tucker%20necessary%20optimality%20conditions%20in%20set-valued%20optimization&rft.jtitle=Japan%20journal%20of%20industrial%20and%20applied%20mathematics&rft.au=Peng,%20Zhenhua&rft.date=2020&rft.volume=37&rft.issue=3&rft.spage=851&rft.epage=866&rft.pages=851-866&rft.issn=0916-7005&rft.eissn=1868-937X&rft_id=info:doi/10.1007/s13160-020-00426-y&rft_dat=%3Cproquest_sprin%3E2438213466%3C/proquest_sprin%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2438213466&rft_id=info:pmid/&rfr_iscdi=true