A new projected Barzilai–Borwein method for the symmetric cone complementarity problem
This paper presents a new projected Barzilai–Borwein method for the complementarity problem over symmetric cone by applying the Barzilai–Borwein-like steplengths to the projected method. A new descent direction is employed and a non-monotone line search is used in the method in order to guarantee th...
Gespeichert in:
Veröffentlicht in: | Japan journal of industrial and applied mathematics 2020-09, Vol.37 (3), p.867-882 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 882 |
---|---|
container_issue | 3 |
container_start_page | 867 |
container_title | Japan journal of industrial and applied mathematics |
container_volume | 37 |
creator | Liu, Xiangjing Liu, Sanyang |
description | This paper presents a new projected Barzilai–Borwein method for the complementarity problem over symmetric cone by applying the Barzilai–Borwein-like steplengths to the projected method. A new descent direction is employed and a non-monotone line search is used in the method in order to guarantee the global convergence. The projected Barzilai–Borwein method is proved to be globally convergent under some suitable conditions. Some preliminary computational results are also reported which confirm the good theoretical properties of the proposed method. |
doi_str_mv | 10.1007/s13160-020-00424-0 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2438213149</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2438213149</sourcerecordid><originalsourceid>FETCH-LOGICAL-c336t-e81f9c3515b53f4348a29e89b13de794f6f8909f711ea177068a0c1426058ced3</originalsourceid><addsrcrecordid>eNp9kM9KAzEQxoMoWKsv4CngeTWzyWaTY1v8BwUvCr2FNJ3YLd3dmmwp9eQ7-IY-iakrePMwM8zwfd_Aj5BLYNfAWHkTgYNkGctTMZGLjB2RASipMs3L2TEZMA0yKxkrTslZjKskkgpgQGYj2uCObkK7Qtfhgo5teK_Wtvr6-By3YYdVQ2vslu2C-jbQbok07ut0CZWjrm0wtXqzxhqbzoaq2x-i5mk_JyferiNe_M4hebm7fZ48ZNOn-8fJaJo5zmWXoQKvHS-gmBfcCy6UzTUqPQe-wFILL73STPsSAC2UJZPKMgcil6xQDhd8SK763PT3bYuxM6t2G5r00uSCqzyBETqp8l7lQhtjQG82oapt2Btg5kDQ9ARNImh-CBqWTLw3xSRuXjH8Rf_j-gaTY3SV</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2438213149</pqid></control><display><type>article</type><title>A new projected Barzilai–Borwein method for the symmetric cone complementarity problem</title><source>SpringerLink Journals - AutoHoldings</source><creator>Liu, Xiangjing ; Liu, Sanyang</creator><creatorcontrib>Liu, Xiangjing ; Liu, Sanyang</creatorcontrib><description>This paper presents a new projected Barzilai–Borwein method for the complementarity problem over symmetric cone by applying the Barzilai–Borwein-like steplengths to the projected method. A new descent direction is employed and a non-monotone line search is used in the method in order to guarantee the global convergence. The projected Barzilai–Borwein method is proved to be globally convergent under some suitable conditions. Some preliminary computational results are also reported which confirm the good theoretical properties of the proposed method.</description><identifier>ISSN: 0916-7005</identifier><identifier>EISSN: 1868-937X</identifier><identifier>DOI: 10.1007/s13160-020-00424-0</identifier><language>eng</language><publisher>Tokyo: Springer Japan</publisher><subject>Applications of Mathematics ; Computational Mathematics and Numerical Analysis ; Convergence ; Mathematics ; Mathematics and Statistics ; Original Paper</subject><ispartof>Japan journal of industrial and applied mathematics, 2020-09, Vol.37 (3), p.867-882</ispartof><rights>The JJIAM Publishing Committee and Springer Japan KK, part of Springer Nature 2020</rights><rights>The JJIAM Publishing Committee and Springer Japan KK, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c336t-e81f9c3515b53f4348a29e89b13de794f6f8909f711ea177068a0c1426058ced3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s13160-020-00424-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s13160-020-00424-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids></links><search><creatorcontrib>Liu, Xiangjing</creatorcontrib><creatorcontrib>Liu, Sanyang</creatorcontrib><title>A new projected Barzilai–Borwein method for the symmetric cone complementarity problem</title><title>Japan journal of industrial and applied mathematics</title><addtitle>Japan J. Indust. Appl. Math</addtitle><description>This paper presents a new projected Barzilai–Borwein method for the complementarity problem over symmetric cone by applying the Barzilai–Borwein-like steplengths to the projected method. A new descent direction is employed and a non-monotone line search is used in the method in order to guarantee the global convergence. The projected Barzilai–Borwein method is proved to be globally convergent under some suitable conditions. Some preliminary computational results are also reported which confirm the good theoretical properties of the proposed method.</description><subject>Applications of Mathematics</subject><subject>Computational Mathematics and Numerical Analysis</subject><subject>Convergence</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Original Paper</subject><issn>0916-7005</issn><issn>1868-937X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kM9KAzEQxoMoWKsv4CngeTWzyWaTY1v8BwUvCr2FNJ3YLd3dmmwp9eQ7-IY-iakrePMwM8zwfd_Aj5BLYNfAWHkTgYNkGctTMZGLjB2RASipMs3L2TEZMA0yKxkrTslZjKskkgpgQGYj2uCObkK7Qtfhgo5teK_Wtvr6-By3YYdVQ2vslu2C-jbQbok07ut0CZWjrm0wtXqzxhqbzoaq2x-i5mk_JyferiNe_M4hebm7fZ48ZNOn-8fJaJo5zmWXoQKvHS-gmBfcCy6UzTUqPQe-wFILL73STPsSAC2UJZPKMgcil6xQDhd8SK763PT3bYuxM6t2G5r00uSCqzyBETqp8l7lQhtjQG82oapt2Btg5kDQ9ARNImh-CBqWTLw3xSRuXjH8Rf_j-gaTY3SV</recordid><startdate>20200901</startdate><enddate>20200901</enddate><creator>Liu, Xiangjing</creator><creator>Liu, Sanyang</creator><general>Springer Japan</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20200901</creationdate><title>A new projected Barzilai–Borwein method for the symmetric cone complementarity problem</title><author>Liu, Xiangjing ; Liu, Sanyang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c336t-e81f9c3515b53f4348a29e89b13de794f6f8909f711ea177068a0c1426058ced3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Applications of Mathematics</topic><topic>Computational Mathematics and Numerical Analysis</topic><topic>Convergence</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Original Paper</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Xiangjing</creatorcontrib><creatorcontrib>Liu, Sanyang</creatorcontrib><collection>CrossRef</collection><jtitle>Japan journal of industrial and applied mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Xiangjing</au><au>Liu, Sanyang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A new projected Barzilai–Borwein method for the symmetric cone complementarity problem</atitle><jtitle>Japan journal of industrial and applied mathematics</jtitle><stitle>Japan J. Indust. Appl. Math</stitle><date>2020-09-01</date><risdate>2020</risdate><volume>37</volume><issue>3</issue><spage>867</spage><epage>882</epage><pages>867-882</pages><issn>0916-7005</issn><eissn>1868-937X</eissn><abstract>This paper presents a new projected Barzilai–Borwein method for the complementarity problem over symmetric cone by applying the Barzilai–Borwein-like steplengths to the projected method. A new descent direction is employed and a non-monotone line search is used in the method in order to guarantee the global convergence. The projected Barzilai–Borwein method is proved to be globally convergent under some suitable conditions. Some preliminary computational results are also reported which confirm the good theoretical properties of the proposed method.</abstract><cop>Tokyo</cop><pub>Springer Japan</pub><doi>10.1007/s13160-020-00424-0</doi><tpages>16</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0916-7005 |
ispartof | Japan journal of industrial and applied mathematics, 2020-09, Vol.37 (3), p.867-882 |
issn | 0916-7005 1868-937X |
language | eng |
recordid | cdi_proquest_journals_2438213149 |
source | SpringerLink Journals - AutoHoldings |
subjects | Applications of Mathematics Computational Mathematics and Numerical Analysis Convergence Mathematics Mathematics and Statistics Original Paper |
title | A new projected Barzilai–Borwein method for the symmetric cone complementarity problem |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T22%3A18%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20new%20projected%20Barzilai%E2%80%93Borwein%20method%20for%20the%20symmetric%20cone%20complementarity%20problem&rft.jtitle=Japan%20journal%20of%20industrial%20and%20applied%20mathematics&rft.au=Liu,%20Xiangjing&rft.date=2020-09-01&rft.volume=37&rft.issue=3&rft.spage=867&rft.epage=882&rft.pages=867-882&rft.issn=0916-7005&rft.eissn=1868-937X&rft_id=info:doi/10.1007/s13160-020-00424-0&rft_dat=%3Cproquest_cross%3E2438213149%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2438213149&rft_id=info:pmid/&rfr_iscdi=true |