A new projected Barzilai–Borwein method for the symmetric cone complementarity problem

This paper presents a new projected Barzilai–Borwein method for the complementarity problem over symmetric cone by applying the Barzilai–Borwein-like steplengths to the projected method. A new descent direction is employed and a non-monotone line search is used in the method in order to guarantee th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Japan journal of industrial and applied mathematics 2020-09, Vol.37 (3), p.867-882
Hauptverfasser: Liu, Xiangjing, Liu, Sanyang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 882
container_issue 3
container_start_page 867
container_title Japan journal of industrial and applied mathematics
container_volume 37
creator Liu, Xiangjing
Liu, Sanyang
description This paper presents a new projected Barzilai–Borwein method for the complementarity problem over symmetric cone by applying the Barzilai–Borwein-like steplengths to the projected method. A new descent direction is employed and a non-monotone line search is used in the method in order to guarantee the global convergence. The projected Barzilai–Borwein method is proved to be globally convergent under some suitable conditions. Some preliminary computational results are also reported which confirm the good theoretical properties of the proposed method.
doi_str_mv 10.1007/s13160-020-00424-0
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2438213149</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2438213149</sourcerecordid><originalsourceid>FETCH-LOGICAL-c336t-e81f9c3515b53f4348a29e89b13de794f6f8909f711ea177068a0c1426058ced3</originalsourceid><addsrcrecordid>eNp9kM9KAzEQxoMoWKsv4CngeTWzyWaTY1v8BwUvCr2FNJ3YLd3dmmwp9eQ7-IY-iakrePMwM8zwfd_Aj5BLYNfAWHkTgYNkGctTMZGLjB2RASipMs3L2TEZMA0yKxkrTslZjKskkgpgQGYj2uCObkK7Qtfhgo5teK_Wtvr6-By3YYdVQ2vslu2C-jbQbok07ut0CZWjrm0wtXqzxhqbzoaq2x-i5mk_JyferiNe_M4hebm7fZ48ZNOn-8fJaJo5zmWXoQKvHS-gmBfcCy6UzTUqPQe-wFILL73STPsSAC2UJZPKMgcil6xQDhd8SK763PT3bYuxM6t2G5r00uSCqzyBETqp8l7lQhtjQG82oapt2Btg5kDQ9ARNImh-CBqWTLw3xSRuXjH8Rf_j-gaTY3SV</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2438213149</pqid></control><display><type>article</type><title>A new projected Barzilai–Borwein method for the symmetric cone complementarity problem</title><source>SpringerLink Journals - AutoHoldings</source><creator>Liu, Xiangjing ; Liu, Sanyang</creator><creatorcontrib>Liu, Xiangjing ; Liu, Sanyang</creatorcontrib><description>This paper presents a new projected Barzilai–Borwein method for the complementarity problem over symmetric cone by applying the Barzilai–Borwein-like steplengths to the projected method. A new descent direction is employed and a non-monotone line search is used in the method in order to guarantee the global convergence. The projected Barzilai–Borwein method is proved to be globally convergent under some suitable conditions. Some preliminary computational results are also reported which confirm the good theoretical properties of the proposed method.</description><identifier>ISSN: 0916-7005</identifier><identifier>EISSN: 1868-937X</identifier><identifier>DOI: 10.1007/s13160-020-00424-0</identifier><language>eng</language><publisher>Tokyo: Springer Japan</publisher><subject>Applications of Mathematics ; Computational Mathematics and Numerical Analysis ; Convergence ; Mathematics ; Mathematics and Statistics ; Original Paper</subject><ispartof>Japan journal of industrial and applied mathematics, 2020-09, Vol.37 (3), p.867-882</ispartof><rights>The JJIAM Publishing Committee and Springer Japan KK, part of Springer Nature 2020</rights><rights>The JJIAM Publishing Committee and Springer Japan KK, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c336t-e81f9c3515b53f4348a29e89b13de794f6f8909f711ea177068a0c1426058ced3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s13160-020-00424-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s13160-020-00424-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids></links><search><creatorcontrib>Liu, Xiangjing</creatorcontrib><creatorcontrib>Liu, Sanyang</creatorcontrib><title>A new projected Barzilai–Borwein method for the symmetric cone complementarity problem</title><title>Japan journal of industrial and applied mathematics</title><addtitle>Japan J. Indust. Appl. Math</addtitle><description>This paper presents a new projected Barzilai–Borwein method for the complementarity problem over symmetric cone by applying the Barzilai–Borwein-like steplengths to the projected method. A new descent direction is employed and a non-monotone line search is used in the method in order to guarantee the global convergence. The projected Barzilai–Borwein method is proved to be globally convergent under some suitable conditions. Some preliminary computational results are also reported which confirm the good theoretical properties of the proposed method.</description><subject>Applications of Mathematics</subject><subject>Computational Mathematics and Numerical Analysis</subject><subject>Convergence</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Original Paper</subject><issn>0916-7005</issn><issn>1868-937X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kM9KAzEQxoMoWKsv4CngeTWzyWaTY1v8BwUvCr2FNJ3YLd3dmmwp9eQ7-IY-iakrePMwM8zwfd_Aj5BLYNfAWHkTgYNkGctTMZGLjB2RASipMs3L2TEZMA0yKxkrTslZjKskkgpgQGYj2uCObkK7Qtfhgo5teK_Wtvr6-By3YYdVQ2vslu2C-jbQbok07ut0CZWjrm0wtXqzxhqbzoaq2x-i5mk_JyferiNe_M4hebm7fZ48ZNOn-8fJaJo5zmWXoQKvHS-gmBfcCy6UzTUqPQe-wFILL73STPsSAC2UJZPKMgcil6xQDhd8SK763PT3bYuxM6t2G5r00uSCqzyBETqp8l7lQhtjQG82oapt2Btg5kDQ9ARNImh-CBqWTLw3xSRuXjH8Rf_j-gaTY3SV</recordid><startdate>20200901</startdate><enddate>20200901</enddate><creator>Liu, Xiangjing</creator><creator>Liu, Sanyang</creator><general>Springer Japan</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20200901</creationdate><title>A new projected Barzilai–Borwein method for the symmetric cone complementarity problem</title><author>Liu, Xiangjing ; Liu, Sanyang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c336t-e81f9c3515b53f4348a29e89b13de794f6f8909f711ea177068a0c1426058ced3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Applications of Mathematics</topic><topic>Computational Mathematics and Numerical Analysis</topic><topic>Convergence</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Original Paper</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Xiangjing</creatorcontrib><creatorcontrib>Liu, Sanyang</creatorcontrib><collection>CrossRef</collection><jtitle>Japan journal of industrial and applied mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Xiangjing</au><au>Liu, Sanyang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A new projected Barzilai–Borwein method for the symmetric cone complementarity problem</atitle><jtitle>Japan journal of industrial and applied mathematics</jtitle><stitle>Japan J. Indust. Appl. Math</stitle><date>2020-09-01</date><risdate>2020</risdate><volume>37</volume><issue>3</issue><spage>867</spage><epage>882</epage><pages>867-882</pages><issn>0916-7005</issn><eissn>1868-937X</eissn><abstract>This paper presents a new projected Barzilai–Borwein method for the complementarity problem over symmetric cone by applying the Barzilai–Borwein-like steplengths to the projected method. A new descent direction is employed and a non-monotone line search is used in the method in order to guarantee the global convergence. The projected Barzilai–Borwein method is proved to be globally convergent under some suitable conditions. Some preliminary computational results are also reported which confirm the good theoretical properties of the proposed method.</abstract><cop>Tokyo</cop><pub>Springer Japan</pub><doi>10.1007/s13160-020-00424-0</doi><tpages>16</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0916-7005
ispartof Japan journal of industrial and applied mathematics, 2020-09, Vol.37 (3), p.867-882
issn 0916-7005
1868-937X
language eng
recordid cdi_proquest_journals_2438213149
source SpringerLink Journals - AutoHoldings
subjects Applications of Mathematics
Computational Mathematics and Numerical Analysis
Convergence
Mathematics
Mathematics and Statistics
Original Paper
title A new projected Barzilai–Borwein method for the symmetric cone complementarity problem
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T22%3A18%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20new%20projected%20Barzilai%E2%80%93Borwein%20method%20for%20the%20symmetric%20cone%20complementarity%20problem&rft.jtitle=Japan%20journal%20of%20industrial%20and%20applied%20mathematics&rft.au=Liu,%20Xiangjing&rft.date=2020-09-01&rft.volume=37&rft.issue=3&rft.spage=867&rft.epage=882&rft.pages=867-882&rft.issn=0916-7005&rft.eissn=1868-937X&rft_id=info:doi/10.1007/s13160-020-00424-0&rft_dat=%3Cproquest_cross%3E2438213149%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2438213149&rft_id=info:pmid/&rfr_iscdi=true