Raspberry-like hollow SnO2-based nanostructures for sensing VOCs and ammonia

The raspberry-like hollow SnO 2 -based (bare SnO 2  and Pd-doped SnO 2 ) nanostructures with different dominant crystal facets were prepared facilely using carbon nanospheres as templates via solvothermal method. Volatile organic compounds (VOCs) and ammonia (NH 3 ) gas sensing performances of the h...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials science. Materials in electronics 2020-09, Vol.31 (17), p.14165-14173
Hauptverfasser: Yan, Wenjun, Zeng, Xiaomin, Wu, Gu, Jiang, Wei, Wei, Di, Ling, Min, Zhou, Houpan, Guo, Chunwei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 14173
container_issue 17
container_start_page 14165
container_title Journal of materials science. Materials in electronics
container_volume 31
creator Yan, Wenjun
Zeng, Xiaomin
Wu, Gu
Jiang, Wei
Wei, Di
Ling, Min
Zhou, Houpan
Guo, Chunwei
description The raspberry-like hollow SnO 2 -based (bare SnO 2  and Pd-doped SnO 2 ) nanostructures with different dominant crystal facets were prepared facilely using carbon nanospheres as templates via solvothermal method. Volatile organic compounds (VOCs) and ammonia (NH 3 ) gas sensing performances of the hollow SnO 2 -based structures were studied systematically. The gas sensing performances were investigated in a temperature range of 150–315 °C. It was found that 285 °C was the optimum operating temperature for both the sensors. The SnO 2 sensor showed excellent VOCs (1–100 ppm) sensing performances, with a fast response/recovery behavior (around 4 s/30 s) at 285 °C. While the Pd-SnO 2  sensor displayed selective NH 3 sensing characteristics at low concentrations of 1.5–12 ppm, interestingly, with a response/recovery time of about 4 s/80 s at 285 °C. Both the SnO 2  and Pd-SnO 2  sensors showed great repeatability for 8 response/recovery cycles, and very slight response recession for a long period. It was found that not only the morphology, the synergistic effect from the heterojunctions of doped Pd and SnO 2 , and the Pd catalysis, but also the crystal facets could modulate the sensing performance of metal oxides.
doi_str_mv 10.1007/s10854-020-03971-x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2438133742</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2438133742</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-9ea0ffee1ad48061bab668f847475ca44ac604ede43022c08506e1d410dbf4403</originalsourceid><addsrcrecordid>eNp9kEtLAzEUhYMoWKt_wFXAdfQmufNaSvEFhYIv3IXMTKaOTpOaO4Ptv3e0gjtXd3O-czkfY6cSziVAdkES8gQFKBCgi0yKzR6byCTTAnP1ss8mUCSZwESpQ3ZE9AYAKep8wub3ltali3Eruvbd8dfQdeGTP_iFEqUlV3NvfaA-DlU_REe8CZGT89T6JX9ezIhbX3O7WgXf2mN20NiO3MnvnbKn66vH2a2YL27uZpdzUWlZ9KJwFprGOWlrzCGVpS3TNG9yzDBLKotoqxTQ1Q41KFWNyyB1skYJddkggp6ys13vOoaPwVFv3sIQ_fjSqHGV1DpDNabULlXFQBRdY9axXdm4NRLMtzWzs2ZGa-bHmtmMkN5BNIb90sW_6n-oL49hcD4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2438133742</pqid></control><display><type>article</type><title>Raspberry-like hollow SnO2-based nanostructures for sensing VOCs and ammonia</title><source>SpringerLink Journals</source><creator>Yan, Wenjun ; Zeng, Xiaomin ; Wu, Gu ; Jiang, Wei ; Wei, Di ; Ling, Min ; Zhou, Houpan ; Guo, Chunwei</creator><creatorcontrib>Yan, Wenjun ; Zeng, Xiaomin ; Wu, Gu ; Jiang, Wei ; Wei, Di ; Ling, Min ; Zhou, Houpan ; Guo, Chunwei</creatorcontrib><description>The raspberry-like hollow SnO 2 -based (bare SnO 2  and Pd-doped SnO 2 ) nanostructures with different dominant crystal facets were prepared facilely using carbon nanospheres as templates via solvothermal method. Volatile organic compounds (VOCs) and ammonia (NH 3 ) gas sensing performances of the hollow SnO 2 -based structures were studied systematically. The gas sensing performances were investigated in a temperature range of 150–315 °C. It was found that 285 °C was the optimum operating temperature for both the sensors. The SnO 2 sensor showed excellent VOCs (1–100 ppm) sensing performances, with a fast response/recovery behavior (around 4 s/30 s) at 285 °C. While the Pd-SnO 2  sensor displayed selective NH 3 sensing characteristics at low concentrations of 1.5–12 ppm, interestingly, with a response/recovery time of about 4 s/80 s at 285 °C. Both the SnO 2  and Pd-SnO 2  sensors showed great repeatability for 8 response/recovery cycles, and very slight response recession for a long period. It was found that not only the morphology, the synergistic effect from the heterojunctions of doped Pd and SnO 2 , and the Pd catalysis, but also the crystal facets could modulate the sensing performance of metal oxides.</description><identifier>ISSN: 0957-4522</identifier><identifier>EISSN: 1573-482X</identifier><identifier>DOI: 10.1007/s10854-020-03971-x</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Ammonia ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Detection ; Gas sensors ; Heterojunctions ; Low concentrations ; Materials Science ; Metal oxides ; Morphology ; Nanospheres ; Nanostructure ; Operating temperature ; Optical and Electronic Materials ; Palladium ; Recovery time ; Sensors ; Synergistic effect ; Tin dioxide ; VOCs ; Volatile organic compounds</subject><ispartof>Journal of materials science. Materials in electronics, 2020-09, Vol.31 (17), p.14165-14173</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020</rights><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-9ea0ffee1ad48061bab668f847475ca44ac604ede43022c08506e1d410dbf4403</citedby><cites>FETCH-LOGICAL-c319t-9ea0ffee1ad48061bab668f847475ca44ac604ede43022c08506e1d410dbf4403</cites><orcidid>0000-0003-4431-838X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10854-020-03971-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10854-020-03971-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Yan, Wenjun</creatorcontrib><creatorcontrib>Zeng, Xiaomin</creatorcontrib><creatorcontrib>Wu, Gu</creatorcontrib><creatorcontrib>Jiang, Wei</creatorcontrib><creatorcontrib>Wei, Di</creatorcontrib><creatorcontrib>Ling, Min</creatorcontrib><creatorcontrib>Zhou, Houpan</creatorcontrib><creatorcontrib>Guo, Chunwei</creatorcontrib><title>Raspberry-like hollow SnO2-based nanostructures for sensing VOCs and ammonia</title><title>Journal of materials science. Materials in electronics</title><addtitle>J Mater Sci: Mater Electron</addtitle><description>The raspberry-like hollow SnO 2 -based (bare SnO 2  and Pd-doped SnO 2 ) nanostructures with different dominant crystal facets were prepared facilely using carbon nanospheres as templates via solvothermal method. Volatile organic compounds (VOCs) and ammonia (NH 3 ) gas sensing performances of the hollow SnO 2 -based structures were studied systematically. The gas sensing performances were investigated in a temperature range of 150–315 °C. It was found that 285 °C was the optimum operating temperature for both the sensors. The SnO 2 sensor showed excellent VOCs (1–100 ppm) sensing performances, with a fast response/recovery behavior (around 4 s/30 s) at 285 °C. While the Pd-SnO 2  sensor displayed selective NH 3 sensing characteristics at low concentrations of 1.5–12 ppm, interestingly, with a response/recovery time of about 4 s/80 s at 285 °C. Both the SnO 2  and Pd-SnO 2  sensors showed great repeatability for 8 response/recovery cycles, and very slight response recession for a long period. It was found that not only the morphology, the synergistic effect from the heterojunctions of doped Pd and SnO 2 , and the Pd catalysis, but also the crystal facets could modulate the sensing performance of metal oxides.</description><subject>Ammonia</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Detection</subject><subject>Gas sensors</subject><subject>Heterojunctions</subject><subject>Low concentrations</subject><subject>Materials Science</subject><subject>Metal oxides</subject><subject>Morphology</subject><subject>Nanospheres</subject><subject>Nanostructure</subject><subject>Operating temperature</subject><subject>Optical and Electronic Materials</subject><subject>Palladium</subject><subject>Recovery time</subject><subject>Sensors</subject><subject>Synergistic effect</subject><subject>Tin dioxide</subject><subject>VOCs</subject><subject>Volatile organic compounds</subject><issn>0957-4522</issn><issn>1573-482X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9kEtLAzEUhYMoWKt_wFXAdfQmufNaSvEFhYIv3IXMTKaOTpOaO4Ptv3e0gjtXd3O-czkfY6cSziVAdkES8gQFKBCgi0yKzR6byCTTAnP1ss8mUCSZwESpQ3ZE9AYAKep8wub3ltali3Eruvbd8dfQdeGTP_iFEqUlV3NvfaA-DlU_REe8CZGT89T6JX9ezIhbX3O7WgXf2mN20NiO3MnvnbKn66vH2a2YL27uZpdzUWlZ9KJwFprGOWlrzCGVpS3TNG9yzDBLKotoqxTQ1Q41KFWNyyB1skYJddkggp6ys13vOoaPwVFv3sIQ_fjSqHGV1DpDNabULlXFQBRdY9axXdm4NRLMtzWzs2ZGa-bHmtmMkN5BNIb90sW_6n-oL49hcD4</recordid><startdate>20200901</startdate><enddate>20200901</enddate><creator>Yan, Wenjun</creator><creator>Zeng, Xiaomin</creator><creator>Wu, Gu</creator><creator>Jiang, Wei</creator><creator>Wei, Di</creator><creator>Ling, Min</creator><creator>Zhou, Houpan</creator><creator>Guo, Chunwei</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>S0W</scope><orcidid>https://orcid.org/0000-0003-4431-838X</orcidid></search><sort><creationdate>20200901</creationdate><title>Raspberry-like hollow SnO2-based nanostructures for sensing VOCs and ammonia</title><author>Yan, Wenjun ; Zeng, Xiaomin ; Wu, Gu ; Jiang, Wei ; Wei, Di ; Ling, Min ; Zhou, Houpan ; Guo, Chunwei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-9ea0ffee1ad48061bab668f847475ca44ac604ede43022c08506e1d410dbf4403</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Ammonia</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Detection</topic><topic>Gas sensors</topic><topic>Heterojunctions</topic><topic>Low concentrations</topic><topic>Materials Science</topic><topic>Metal oxides</topic><topic>Morphology</topic><topic>Nanospheres</topic><topic>Nanostructure</topic><topic>Operating temperature</topic><topic>Optical and Electronic Materials</topic><topic>Palladium</topic><topic>Recovery time</topic><topic>Sensors</topic><topic>Synergistic effect</topic><topic>Tin dioxide</topic><topic>VOCs</topic><topic>Volatile organic compounds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yan, Wenjun</creatorcontrib><creatorcontrib>Zeng, Xiaomin</creatorcontrib><creatorcontrib>Wu, Gu</creatorcontrib><creatorcontrib>Jiang, Wei</creatorcontrib><creatorcontrib>Wei, Di</creatorcontrib><creatorcontrib>Ling, Min</creatorcontrib><creatorcontrib>Zhou, Houpan</creatorcontrib><creatorcontrib>Guo, Chunwei</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>DELNET Engineering &amp; Technology Collection</collection><jtitle>Journal of materials science. Materials in electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yan, Wenjun</au><au>Zeng, Xiaomin</au><au>Wu, Gu</au><au>Jiang, Wei</au><au>Wei, Di</au><au>Ling, Min</au><au>Zhou, Houpan</au><au>Guo, Chunwei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Raspberry-like hollow SnO2-based nanostructures for sensing VOCs and ammonia</atitle><jtitle>Journal of materials science. Materials in electronics</jtitle><stitle>J Mater Sci: Mater Electron</stitle><date>2020-09-01</date><risdate>2020</risdate><volume>31</volume><issue>17</issue><spage>14165</spage><epage>14173</epage><pages>14165-14173</pages><issn>0957-4522</issn><eissn>1573-482X</eissn><abstract>The raspberry-like hollow SnO 2 -based (bare SnO 2  and Pd-doped SnO 2 ) nanostructures with different dominant crystal facets were prepared facilely using carbon nanospheres as templates via solvothermal method. Volatile organic compounds (VOCs) and ammonia (NH 3 ) gas sensing performances of the hollow SnO 2 -based structures were studied systematically. The gas sensing performances were investigated in a temperature range of 150–315 °C. It was found that 285 °C was the optimum operating temperature for both the sensors. The SnO 2 sensor showed excellent VOCs (1–100 ppm) sensing performances, with a fast response/recovery behavior (around 4 s/30 s) at 285 °C. While the Pd-SnO 2  sensor displayed selective NH 3 sensing characteristics at low concentrations of 1.5–12 ppm, interestingly, with a response/recovery time of about 4 s/80 s at 285 °C. Both the SnO 2  and Pd-SnO 2  sensors showed great repeatability for 8 response/recovery cycles, and very slight response recession for a long period. It was found that not only the morphology, the synergistic effect from the heterojunctions of doped Pd and SnO 2 , and the Pd catalysis, but also the crystal facets could modulate the sensing performance of metal oxides.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10854-020-03971-x</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-4431-838X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0957-4522
ispartof Journal of materials science. Materials in electronics, 2020-09, Vol.31 (17), p.14165-14173
issn 0957-4522
1573-482X
language eng
recordid cdi_proquest_journals_2438133742
source SpringerLink Journals
subjects Ammonia
Characterization and Evaluation of Materials
Chemistry and Materials Science
Detection
Gas sensors
Heterojunctions
Low concentrations
Materials Science
Metal oxides
Morphology
Nanospheres
Nanostructure
Operating temperature
Optical and Electronic Materials
Palladium
Recovery time
Sensors
Synergistic effect
Tin dioxide
VOCs
Volatile organic compounds
title Raspberry-like hollow SnO2-based nanostructures for sensing VOCs and ammonia
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T12%3A44%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Raspberry-like%20hollow%20SnO2-based%20nanostructures%20for%20sensing%20VOCs%20and%20ammonia&rft.jtitle=Journal%20of%20materials%20science.%20Materials%20in%20electronics&rft.au=Yan,%20Wenjun&rft.date=2020-09-01&rft.volume=31&rft.issue=17&rft.spage=14165&rft.epage=14173&rft.pages=14165-14173&rft.issn=0957-4522&rft.eissn=1573-482X&rft_id=info:doi/10.1007/s10854-020-03971-x&rft_dat=%3Cproquest_cross%3E2438133742%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2438133742&rft_id=info:pmid/&rfr_iscdi=true