Magnetically-assisted synthesis of porous sol-gel magnetite matrices with structural anisotropy

[Display omitted] •Hydrosol of pristine magnetite was synthesized by the US-assisted co-precipitation.•Structured hydrogels were formed by gelation in the presence of magnetic fields.•Drying of hydrogels under mild conditions resulted in anisotropic magnetite xerogels.•The textural properties of the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of magnetism and magnetic materials 2020-06, Vol.503, p.166619, Article 166619
Hauptverfasser: Anastasova, Elizaveta I., Puzyrev, Dmitry, Ivanovski, Vladimir, Drozdov, Andrey S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 166619
container_title Journal of magnetism and magnetic materials
container_volume 503
creator Anastasova, Elizaveta I.
Puzyrev, Dmitry
Ivanovski, Vladimir
Drozdov, Andrey S.
description [Display omitted] •Hydrosol of pristine magnetite was synthesized by the US-assisted co-precipitation.•Structured hydrogels were formed by gelation in the presence of magnetic fields.•Drying of hydrogels under mild conditions resulted in anisotropic magnetite xerogels.•The textural properties of the materials dependent on the applied magnetic field. Here we describe the first example of magnetite based sol-gel matrices with structure anisotropy. The materials were synthesized by magnetic structuring of magnetic fluids based on pristine magnetite nanoparticles with a subsequent formation of magnetite hydrogels and drying in mild conditions. The corresponding ferrofluid was synthesized by an ultrasonically-assisted co-precipitation procedure and consisted of 10 nm pristine magnetite nanoparticles (MNPs) dispersed in deionized water. Colloidal stability of the system was maintained by the high value of zeta potential valued +33 mV at pH 7.0. Under the influence of propylene oxide, the surface of MNPs was partially dehydrated and inter-particle Fe–O–Fe bonds were formed leading to gelation of the system. The produced materials had a linear periodic structure with its parameters, such as periodicity, relative surface area, pore diameter, total pore volume, dependent on the magnetic fields applied during their synthesis. Thus, the change of the magnetic field from zero to 515 G led to the elevation of the materials surface area from 125 to 209 m∊2/g.
doi_str_mv 10.1016/j.jmmm.2020.166619
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2437976507</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0304885319325296</els_id><sourcerecordid>2437976507</sourcerecordid><originalsourceid>FETCH-LOGICAL-c328t-9329323b30347da8802a2d307fa7beca64177af2e9a3f71cb65c15b4f32f19f53</originalsourceid><addsrcrecordid>eNp9kEtLxDAQx4MouD6-gKeA5655tEkLXmTxBSte9BzSNNlNaZs1kyr99napZ2FgHvz_M8MPoRtK1pRQcdeu277v14yweSCEoNUJWtFS8iyXQpyiFeEkz8qy4OfoAqAlhNC8FCuk3vRusMkb3XVTpgE8JNtgmIa0t3ODg8OHEMMIGEKX7WyH-8WR7Fyl6I0F_OPTHkOKo0lj1B3Wg4eQYjhMV-jM6Q7s9V--RJ9Pjx-bl2z7_vy6edhmhrMyZRVnc_CaE57LRpclYZo1nEinZW2NFjmVUjtmK82dpKYWhaFFnTvOHK1cwS_R7bL3EMPXaCGpNoxxmE8qlnNZSVEQOavYojIxAETr1CH6XsdJUaKOIFWrjiDVEaRaQM6m-8Vk5_-_vY0KjLeDsY2P1iTVBP-f_Rf3PH4Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2437976507</pqid></control><display><type>article</type><title>Magnetically-assisted synthesis of porous sol-gel magnetite matrices with structural anisotropy</title><source>Elsevier ScienceDirect Journals</source><creator>Anastasova, Elizaveta I. ; Puzyrev, Dmitry ; Ivanovski, Vladimir ; Drozdov, Andrey S.</creator><creatorcontrib>Anastasova, Elizaveta I. ; Puzyrev, Dmitry ; Ivanovski, Vladimir ; Drozdov, Andrey S.</creatorcontrib><description>[Display omitted] •Hydrosol of pristine magnetite was synthesized by the US-assisted co-precipitation.•Structured hydrogels were formed by gelation in the presence of magnetic fields.•Drying of hydrogels under mild conditions resulted in anisotropic magnetite xerogels.•The textural properties of the materials dependent on the applied magnetic field. Here we describe the first example of magnetite based sol-gel matrices with structure anisotropy. The materials were synthesized by magnetic structuring of magnetic fluids based on pristine magnetite nanoparticles with a subsequent formation of magnetite hydrogels and drying in mild conditions. The corresponding ferrofluid was synthesized by an ultrasonically-assisted co-precipitation procedure and consisted of 10 nm pristine magnetite nanoparticles (MNPs) dispersed in deionized water. Colloidal stability of the system was maintained by the high value of zeta potential valued +33 mV at pH 7.0. Under the influence of propylene oxide, the surface of MNPs was partially dehydrated and inter-particle Fe–O–Fe bonds were formed leading to gelation of the system. The produced materials had a linear periodic structure with its parameters, such as periodicity, relative surface area, pore diameter, total pore volume, dependent on the magnetic fields applied during their synthesis. Thus, the change of the magnetic field from zero to 515 G led to the elevation of the materials surface area from 125 to 209 m∊2/g.</description><identifier>ISSN: 0304-8853</identifier><identifier>EISSN: 1873-4766</identifier><identifier>DOI: 10.1016/j.jmmm.2020.166619</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Anisotropy ; Dehydration ; Deionization ; Ferrofluids ; Gelation ; Hydrogels ; Magnetic fields ; Magnetic fluids ; Magnetic structuring ; Magnetite ; Nanoparticles ; Periodic structures ; Periodic variations ; Propylene oxide ; Sol-gel ; Sol-gel processes ; Structural anisotropy ; Superparamagnetic materials ; Surface area ; Synthesis ; Zeta potential</subject><ispartof>Journal of magnetism and magnetic materials, 2020-06, Vol.503, p.166619, Article 166619</ispartof><rights>2020 Elsevier B.V.</rights><rights>Copyright Elsevier BV Jun 1, 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c328t-9329323b30347da8802a2d307fa7beca64177af2e9a3f71cb65c15b4f32f19f53</citedby><cites>FETCH-LOGICAL-c328t-9329323b30347da8802a2d307fa7beca64177af2e9a3f71cb65c15b4f32f19f53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0304885319325296$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Anastasova, Elizaveta I.</creatorcontrib><creatorcontrib>Puzyrev, Dmitry</creatorcontrib><creatorcontrib>Ivanovski, Vladimir</creatorcontrib><creatorcontrib>Drozdov, Andrey S.</creatorcontrib><title>Magnetically-assisted synthesis of porous sol-gel magnetite matrices with structural anisotropy</title><title>Journal of magnetism and magnetic materials</title><description>[Display omitted] •Hydrosol of pristine magnetite was synthesized by the US-assisted co-precipitation.•Structured hydrogels were formed by gelation in the presence of magnetic fields.•Drying of hydrogels under mild conditions resulted in anisotropic magnetite xerogels.•The textural properties of the materials dependent on the applied magnetic field. Here we describe the first example of magnetite based sol-gel matrices with structure anisotropy. The materials were synthesized by magnetic structuring of magnetic fluids based on pristine magnetite nanoparticles with a subsequent formation of magnetite hydrogels and drying in mild conditions. The corresponding ferrofluid was synthesized by an ultrasonically-assisted co-precipitation procedure and consisted of 10 nm pristine magnetite nanoparticles (MNPs) dispersed in deionized water. Colloidal stability of the system was maintained by the high value of zeta potential valued +33 mV at pH 7.0. Under the influence of propylene oxide, the surface of MNPs was partially dehydrated and inter-particle Fe–O–Fe bonds were formed leading to gelation of the system. The produced materials had a linear periodic structure with its parameters, such as periodicity, relative surface area, pore diameter, total pore volume, dependent on the magnetic fields applied during their synthesis. Thus, the change of the magnetic field from zero to 515 G led to the elevation of the materials surface area from 125 to 209 m∊2/g.</description><subject>Anisotropy</subject><subject>Dehydration</subject><subject>Deionization</subject><subject>Ferrofluids</subject><subject>Gelation</subject><subject>Hydrogels</subject><subject>Magnetic fields</subject><subject>Magnetic fluids</subject><subject>Magnetic structuring</subject><subject>Magnetite</subject><subject>Nanoparticles</subject><subject>Periodic structures</subject><subject>Periodic variations</subject><subject>Propylene oxide</subject><subject>Sol-gel</subject><subject>Sol-gel processes</subject><subject>Structural anisotropy</subject><subject>Superparamagnetic materials</subject><subject>Surface area</subject><subject>Synthesis</subject><subject>Zeta potential</subject><issn>0304-8853</issn><issn>1873-4766</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLxDAQx4MouD6-gKeA5655tEkLXmTxBSte9BzSNNlNaZs1kyr99napZ2FgHvz_M8MPoRtK1pRQcdeu277v14yweSCEoNUJWtFS8iyXQpyiFeEkz8qy4OfoAqAlhNC8FCuk3vRusMkb3XVTpgE8JNtgmIa0t3ODg8OHEMMIGEKX7WyH-8WR7Fyl6I0F_OPTHkOKo0lj1B3Wg4eQYjhMV-jM6Q7s9V--RJ9Pjx-bl2z7_vy6edhmhrMyZRVnc_CaE57LRpclYZo1nEinZW2NFjmVUjtmK82dpKYWhaFFnTvOHK1cwS_R7bL3EMPXaCGpNoxxmE8qlnNZSVEQOavYojIxAETr1CH6XsdJUaKOIFWrjiDVEaRaQM6m-8Vk5_-_vY0KjLeDsY2P1iTVBP-f_Rf3PH4Q</recordid><startdate>20200601</startdate><enddate>20200601</enddate><creator>Anastasova, Elizaveta I.</creator><creator>Puzyrev, Dmitry</creator><creator>Ivanovski, Vladimir</creator><creator>Drozdov, Andrey S.</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20200601</creationdate><title>Magnetically-assisted synthesis of porous sol-gel magnetite matrices with structural anisotropy</title><author>Anastasova, Elizaveta I. ; Puzyrev, Dmitry ; Ivanovski, Vladimir ; Drozdov, Andrey S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c328t-9329323b30347da8802a2d307fa7beca64177af2e9a3f71cb65c15b4f32f19f53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Anisotropy</topic><topic>Dehydration</topic><topic>Deionization</topic><topic>Ferrofluids</topic><topic>Gelation</topic><topic>Hydrogels</topic><topic>Magnetic fields</topic><topic>Magnetic fluids</topic><topic>Magnetic structuring</topic><topic>Magnetite</topic><topic>Nanoparticles</topic><topic>Periodic structures</topic><topic>Periodic variations</topic><topic>Propylene oxide</topic><topic>Sol-gel</topic><topic>Sol-gel processes</topic><topic>Structural anisotropy</topic><topic>Superparamagnetic materials</topic><topic>Surface area</topic><topic>Synthesis</topic><topic>Zeta potential</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Anastasova, Elizaveta I.</creatorcontrib><creatorcontrib>Puzyrev, Dmitry</creatorcontrib><creatorcontrib>Ivanovski, Vladimir</creatorcontrib><creatorcontrib>Drozdov, Andrey S.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of magnetism and magnetic materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Anastasova, Elizaveta I.</au><au>Puzyrev, Dmitry</au><au>Ivanovski, Vladimir</au><au>Drozdov, Andrey S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Magnetically-assisted synthesis of porous sol-gel magnetite matrices with structural anisotropy</atitle><jtitle>Journal of magnetism and magnetic materials</jtitle><date>2020-06-01</date><risdate>2020</risdate><volume>503</volume><spage>166619</spage><pages>166619-</pages><artnum>166619</artnum><issn>0304-8853</issn><eissn>1873-4766</eissn><abstract>[Display omitted] •Hydrosol of pristine magnetite was synthesized by the US-assisted co-precipitation.•Structured hydrogels were formed by gelation in the presence of magnetic fields.•Drying of hydrogels under mild conditions resulted in anisotropic magnetite xerogels.•The textural properties of the materials dependent on the applied magnetic field. Here we describe the first example of magnetite based sol-gel matrices with structure anisotropy. The materials were synthesized by magnetic structuring of magnetic fluids based on pristine magnetite nanoparticles with a subsequent formation of magnetite hydrogels and drying in mild conditions. The corresponding ferrofluid was synthesized by an ultrasonically-assisted co-precipitation procedure and consisted of 10 nm pristine magnetite nanoparticles (MNPs) dispersed in deionized water. Colloidal stability of the system was maintained by the high value of zeta potential valued +33 mV at pH 7.0. Under the influence of propylene oxide, the surface of MNPs was partially dehydrated and inter-particle Fe–O–Fe bonds were formed leading to gelation of the system. The produced materials had a linear periodic structure with its parameters, such as periodicity, relative surface area, pore diameter, total pore volume, dependent on the magnetic fields applied during their synthesis. Thus, the change of the magnetic field from zero to 515 G led to the elevation of the materials surface area from 125 to 209 m∊2/g.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jmmm.2020.166619</doi></addata></record>
fulltext fulltext
identifier ISSN: 0304-8853
ispartof Journal of magnetism and magnetic materials, 2020-06, Vol.503, p.166619, Article 166619
issn 0304-8853
1873-4766
language eng
recordid cdi_proquest_journals_2437976507
source Elsevier ScienceDirect Journals
subjects Anisotropy
Dehydration
Deionization
Ferrofluids
Gelation
Hydrogels
Magnetic fields
Magnetic fluids
Magnetic structuring
Magnetite
Nanoparticles
Periodic structures
Periodic variations
Propylene oxide
Sol-gel
Sol-gel processes
Structural anisotropy
Superparamagnetic materials
Surface area
Synthesis
Zeta potential
title Magnetically-assisted synthesis of porous sol-gel magnetite matrices with structural anisotropy
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T04%3A36%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Magnetically-assisted%20synthesis%20of%20porous%20sol-gel%20magnetite%20matrices%20with%20structural%20anisotropy&rft.jtitle=Journal%20of%20magnetism%20and%20magnetic%20materials&rft.au=Anastasova,%20Elizaveta%20I.&rft.date=2020-06-01&rft.volume=503&rft.spage=166619&rft.pages=166619-&rft.artnum=166619&rft.issn=0304-8853&rft.eissn=1873-4766&rft_id=info:doi/10.1016/j.jmmm.2020.166619&rft_dat=%3Cproquest_cross%3E2437976507%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2437976507&rft_id=info:pmid/&rft_els_id=S0304885319325296&rfr_iscdi=true