Determining Lyapunov exponents of non-smooth systems: Perturbation vectors approach
•It is possible to easily estimate all Lyapunov Exponents of a discontinuous system.•Possibility of generating a trajectory from a selected point is the only requirement.•The presented method works for both: maps and continuous-time systems.•Application for mechanical systems, including impact and s...
Gespeichert in:
Veröffentlicht in: | Mechanical systems and signal processing 2020-07, Vol.141, p.106734, Article 106734 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 106734 |
container_title | Mechanical systems and signal processing |
container_volume | 141 |
creator | Balcerzak, Marek Dabrowski, Artur Blazejczyk–Okolewska, Barbara Stefanski, Andrzej |
description | •It is possible to easily estimate all Lyapunov Exponents of a discontinuous system.•Possibility of generating a trajectory from a selected point is the only requirement.•The presented method works for both: maps and continuous-time systems.•Application for mechanical systems, including impact and stick-slip, is presented.
This paper presents a novel, simple method of Lyapunov Exponents (LEs) spectrum estimation for non-smooth and discontinuous systems. The presented algorithm works for continuous-time dynamical systems, as well as for discrete maps. Its simplicity and flexibility enables to estimate LEs of complex, discontinuous systems in an easy manner. The paper starts with a comprehensive review of the state-of-art methods of the LEs computation for non-smooth systems. Then, the novel algorithm is introduced. Further on, examples of its use are provided. The presented applications include non-smooth and discontinuous maps, as well as continuous-time mechanical systems with discontinuities induced by impacts or by dry friction. The paper confirms that the method is simple, effective and robust. The presented algorithm can facilitate research in a large class of discontinuous systems, including stick-slip oscillators and many others. |
doi_str_mv | 10.1016/j.ymssp.2020.106734 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2437904075</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0888327020301205</els_id><sourcerecordid>2437904075</sourcerecordid><originalsourceid>FETCH-LOGICAL-c376t-56cda2f7e05bd9ed314f9611bf34351e5824bfe1fdc2b555434a4421ed2f7e533</originalsourceid><addsrcrecordid>eNp9kMtKxDAUhoMoOI4-gZuA64659iK4kPEKAwrqOrTpqZNik5qkg317W8e1qwOH_zs_50PonJIVJTS9bFdjF0K_YoTNmzTj4gAtKCnShDKaHqIFyfM84Swjx-gkhJYQUgiSLtDrLUTwnbHGfuDNWPaDdTsM372zYGPArsHW2SR0zsUtDmOI0IUr_AI-Dr4qo3EW70BH5wMu-967Um9P0VFTfgY4-5tL9H5_97Z-TDbPD0_rm02ieZbGRKa6LlmTAZFVXUDNqWiKlNKq4YJLCjJnomqANrVmlZRScFEKwSjUMyQ5X6KL_d2p9muAEFXrBm-nSsUEzwoiSCanFN-ntHcheGhU701X-lFRomZ7qlW_9tRsT-3tTdT1noLpgZ0Br4I2YDXUxk_vqtqZf_kf68p7Ag</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2437904075</pqid></control><display><type>article</type><title>Determining Lyapunov exponents of non-smooth systems: Perturbation vectors approach</title><source>Access via ScienceDirect (Elsevier)</source><creator>Balcerzak, Marek ; Dabrowski, Artur ; Blazejczyk–Okolewska, Barbara ; Stefanski, Andrzej</creator><creatorcontrib>Balcerzak, Marek ; Dabrowski, Artur ; Blazejczyk–Okolewska, Barbara ; Stefanski, Andrzej</creatorcontrib><description>•It is possible to easily estimate all Lyapunov Exponents of a discontinuous system.•Possibility of generating a trajectory from a selected point is the only requirement.•The presented method works for both: maps and continuous-time systems.•Application for mechanical systems, including impact and stick-slip, is presented.
This paper presents a novel, simple method of Lyapunov Exponents (LEs) spectrum estimation for non-smooth and discontinuous systems. The presented algorithm works for continuous-time dynamical systems, as well as for discrete maps. Its simplicity and flexibility enables to estimate LEs of complex, discontinuous systems in an easy manner. The paper starts with a comprehensive review of the state-of-art methods of the LEs computation for non-smooth systems. Then, the novel algorithm is introduced. Further on, examples of its use are provided. The presented applications include non-smooth and discontinuous maps, as well as continuous-time mechanical systems with discontinuities induced by impacts or by dry friction. The paper confirms that the method is simple, effective and robust. The presented algorithm can facilitate research in a large class of discontinuous systems, including stick-slip oscillators and many others.</description><identifier>ISSN: 0888-3270</identifier><identifier>EISSN: 1096-1216</identifier><identifier>DOI: 10.1016/j.ymssp.2020.106734</identifier><language>eng</language><publisher>Berlin: Elsevier Ltd</publisher><subject>Algorithms ; Discontinuity ; Discontinuous systems ; Dry friction ; Liapunov exponents ; Lyapunov exponents ; Mechanical systems ; Non-smooth systems ; Oscillators ; Perturbation ; Perturbation methods ; Stick-slip</subject><ispartof>Mechanical systems and signal processing, 2020-07, Vol.141, p.106734, Article 106734</ispartof><rights>2020 The Authors</rights><rights>Copyright Elsevier BV Jul 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c376t-56cda2f7e05bd9ed314f9611bf34351e5824bfe1fdc2b555434a4421ed2f7e533</citedby><cites>FETCH-LOGICAL-c376t-56cda2f7e05bd9ed314f9611bf34351e5824bfe1fdc2b555434a4421ed2f7e533</cites><orcidid>0000-0002-2144-6162</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ymssp.2020.106734$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Balcerzak, Marek</creatorcontrib><creatorcontrib>Dabrowski, Artur</creatorcontrib><creatorcontrib>Blazejczyk–Okolewska, Barbara</creatorcontrib><creatorcontrib>Stefanski, Andrzej</creatorcontrib><title>Determining Lyapunov exponents of non-smooth systems: Perturbation vectors approach</title><title>Mechanical systems and signal processing</title><description>•It is possible to easily estimate all Lyapunov Exponents of a discontinuous system.•Possibility of generating a trajectory from a selected point is the only requirement.•The presented method works for both: maps and continuous-time systems.•Application for mechanical systems, including impact and stick-slip, is presented.
This paper presents a novel, simple method of Lyapunov Exponents (LEs) spectrum estimation for non-smooth and discontinuous systems. The presented algorithm works for continuous-time dynamical systems, as well as for discrete maps. Its simplicity and flexibility enables to estimate LEs of complex, discontinuous systems in an easy manner. The paper starts with a comprehensive review of the state-of-art methods of the LEs computation for non-smooth systems. Then, the novel algorithm is introduced. Further on, examples of its use are provided. The presented applications include non-smooth and discontinuous maps, as well as continuous-time mechanical systems with discontinuities induced by impacts or by dry friction. The paper confirms that the method is simple, effective and robust. The presented algorithm can facilitate research in a large class of discontinuous systems, including stick-slip oscillators and many others.</description><subject>Algorithms</subject><subject>Discontinuity</subject><subject>Discontinuous systems</subject><subject>Dry friction</subject><subject>Liapunov exponents</subject><subject>Lyapunov exponents</subject><subject>Mechanical systems</subject><subject>Non-smooth systems</subject><subject>Oscillators</subject><subject>Perturbation</subject><subject>Perturbation methods</subject><subject>Stick-slip</subject><issn>0888-3270</issn><issn>1096-1216</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kMtKxDAUhoMoOI4-gZuA64659iK4kPEKAwrqOrTpqZNik5qkg317W8e1qwOH_zs_50PonJIVJTS9bFdjF0K_YoTNmzTj4gAtKCnShDKaHqIFyfM84Swjx-gkhJYQUgiSLtDrLUTwnbHGfuDNWPaDdTsM372zYGPArsHW2SR0zsUtDmOI0IUr_AI-Dr4qo3EW70BH5wMu-967Um9P0VFTfgY4-5tL9H5_97Z-TDbPD0_rm02ieZbGRKa6LlmTAZFVXUDNqWiKlNKq4YJLCjJnomqANrVmlZRScFEKwSjUMyQ5X6KL_d2p9muAEFXrBm-nSsUEzwoiSCanFN-ntHcheGhU701X-lFRomZ7qlW_9tRsT-3tTdT1noLpgZ0Br4I2YDXUxk_vqtqZf_kf68p7Ag</recordid><startdate>202007</startdate><enddate>202007</enddate><creator>Balcerzak, Marek</creator><creator>Dabrowski, Artur</creator><creator>Blazejczyk–Okolewska, Barbara</creator><creator>Stefanski, Andrzej</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-2144-6162</orcidid></search><sort><creationdate>202007</creationdate><title>Determining Lyapunov exponents of non-smooth systems: Perturbation vectors approach</title><author>Balcerzak, Marek ; Dabrowski, Artur ; Blazejczyk–Okolewska, Barbara ; Stefanski, Andrzej</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c376t-56cda2f7e05bd9ed314f9611bf34351e5824bfe1fdc2b555434a4421ed2f7e533</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Discontinuity</topic><topic>Discontinuous systems</topic><topic>Dry friction</topic><topic>Liapunov exponents</topic><topic>Lyapunov exponents</topic><topic>Mechanical systems</topic><topic>Non-smooth systems</topic><topic>Oscillators</topic><topic>Perturbation</topic><topic>Perturbation methods</topic><topic>Stick-slip</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Balcerzak, Marek</creatorcontrib><creatorcontrib>Dabrowski, Artur</creatorcontrib><creatorcontrib>Blazejczyk–Okolewska, Barbara</creatorcontrib><creatorcontrib>Stefanski, Andrzej</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Mechanical systems and signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Balcerzak, Marek</au><au>Dabrowski, Artur</au><au>Blazejczyk–Okolewska, Barbara</au><au>Stefanski, Andrzej</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Determining Lyapunov exponents of non-smooth systems: Perturbation vectors approach</atitle><jtitle>Mechanical systems and signal processing</jtitle><date>2020-07</date><risdate>2020</risdate><volume>141</volume><spage>106734</spage><pages>106734-</pages><artnum>106734</artnum><issn>0888-3270</issn><eissn>1096-1216</eissn><abstract>•It is possible to easily estimate all Lyapunov Exponents of a discontinuous system.•Possibility of generating a trajectory from a selected point is the only requirement.•The presented method works for both: maps and continuous-time systems.•Application for mechanical systems, including impact and stick-slip, is presented.
This paper presents a novel, simple method of Lyapunov Exponents (LEs) spectrum estimation for non-smooth and discontinuous systems. The presented algorithm works for continuous-time dynamical systems, as well as for discrete maps. Its simplicity and flexibility enables to estimate LEs of complex, discontinuous systems in an easy manner. The paper starts with a comprehensive review of the state-of-art methods of the LEs computation for non-smooth systems. Then, the novel algorithm is introduced. Further on, examples of its use are provided. The presented applications include non-smooth and discontinuous maps, as well as continuous-time mechanical systems with discontinuities induced by impacts or by dry friction. The paper confirms that the method is simple, effective and robust. The presented algorithm can facilitate research in a large class of discontinuous systems, including stick-slip oscillators and many others.</abstract><cop>Berlin</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.ymssp.2020.106734</doi><orcidid>https://orcid.org/0000-0002-2144-6162</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0888-3270 |
ispartof | Mechanical systems and signal processing, 2020-07, Vol.141, p.106734, Article 106734 |
issn | 0888-3270 1096-1216 |
language | eng |
recordid | cdi_proquest_journals_2437904075 |
source | Access via ScienceDirect (Elsevier) |
subjects | Algorithms Discontinuity Discontinuous systems Dry friction Liapunov exponents Lyapunov exponents Mechanical systems Non-smooth systems Oscillators Perturbation Perturbation methods Stick-slip |
title | Determining Lyapunov exponents of non-smooth systems: Perturbation vectors approach |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T22%3A49%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Determining%20Lyapunov%20exponents%20of%20non-smooth%20systems:%20Perturbation%20vectors%20approach&rft.jtitle=Mechanical%20systems%20and%20signal%20processing&rft.au=Balcerzak,%20Marek&rft.date=2020-07&rft.volume=141&rft.spage=106734&rft.pages=106734-&rft.artnum=106734&rft.issn=0888-3270&rft.eissn=1096-1216&rft_id=info:doi/10.1016/j.ymssp.2020.106734&rft_dat=%3Cproquest_cross%3E2437904075%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2437904075&rft_id=info:pmid/&rft_els_id=S0888327020301205&rfr_iscdi=true |